Abstract
The study deals with the development of an immobilized biocatalyst for the production of fructooligosaccharides. Several commercial anion-exchange resins and polymethacrylate carriers were tested for the immobilization either by the direct attachment of fructosyltransferase or by the attachment accompanied by simultaneous glutaraldehyde crosslinking in the pH range from 5.7 to 7.1. On the basis of the efficiency of immobilization and the storage stability, Amberlite IRA 900 and Dowex Marathon MSA were selected as the best carriers for fructosyltransferase immobilization by direct attachment at pH 5.7.
[1] Yun, J. W., Enzyme Microb. Technol. 19, 107 (1996). http://dx.doi.org/10.1016/0141-0229(95)00188-310.1016/0141-0229(95)00188-3Search in Google Scholar
[2] Madlová, A., Antošová, M., Baráthová, M., Polakovič, M., Štefuca, V., and Báleš, V., Chem. Pap. 53, 366 (1999). Search in Google Scholar
[3] Antošová, M. and Polakovič, M., Chem. Pap. 55, 350 (2001). Search in Google Scholar
[4] Yun, J. W., Kang, K. R., and Song, C.-H., Biotechnol. Tech. 9, 805 (1995). http://dx.doi.org/10.1007/BF0015940510.1007/BF00159405Search in Google Scholar
[5] Hayashi, S., Ito, K., Nonoguchi, M., Takasaki, Y., and Imada, K., J. Ferment. Bioeng. 72, 68 (1991). http://dx.doi.org/10.1016/0922-338X(91)90150-F10.1016/0922-338X(91)90150-FSearch in Google Scholar
[6] Hayashi, S., Tubouchi, M., Takasaki, Y., and Imada, K., Biotechnol. Lett. 16, 227 (1994). http://dx.doi.org/10.1007/BF0013461610.1007/BF00134616Search in Google Scholar
[7] Kim, M. H., Choi, S. S., In, M. J., Choi, I. S., Han, M. S., and Lim, B. S., U.S. 5215905 (1993). Search in Google Scholar
[8] Ghazi, I., De Segura, A. G., Fernandez-Arrojo, L., Alcalde, M., Yates, M., Rojas-Cervantes, M. L., Plou, F. J., and Ballesteros, A., J. Mol. Catal. 35, 19 (2005). http://dx.doi.org/10.1016/j.molcatb.2005.04.01310.1016/j.molcatb.2005.04.013Search in Google Scholar
[9] Tanriseven, A. and Aslan, Y., Enzyme Microb. Technol. 36, 550 (2005). http://dx.doi.org/10.1016/j.enzmictec.2004.12.00110.1016/j.enzmictec.2004.12.001Search in Google Scholar
[10] Vandáková, M., Platková, Z., Antošová, M., Báleš, V., and Polakovič, M., Chem. Pap. 58, 15 (2004). Search in Google Scholar
[11] Antošová, M., Polakovič, M., Vandáková, M., and Platková, Z., in Proceedings of the 31st International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 2004. Search in Google Scholar
[12] Martin, M. T., Plou, F. J., Alcalde, M., and Ballesteros, A., J. Mol. Catal. 21, 299 (2003). http://dx.doi.org/10.1016/S1381-1177(02)00264-310.1016/S1381-1177(02)00264-3Search in Google Scholar
[13] Hernaiz, M. J. and Crout, D. H. G., Enzyme Microb. Technol. 27, 26 (2000). http://dx.doi.org/10.1016/S0141-0229(00)00150-210.1016/S0141-0229(00)00150-2Search in Google Scholar
[14] Chiang, C. J., Lee, W. C., Sheu, D. C., and Duan, K. J., Biotechnol. Prog. 13, 577 (1997). http://dx.doi.org/10.1021/bp970067z10.1021/bp970067zSearch in Google Scholar PubMed
[15] Hayashi, S., Hayashi, T., Kinoshita, J., Takasaki, Y., and Imada, K., J. Ind. Microbiol. 9, 247 (1992). http://dx.doi.org/10.1007/BF0156963110.1007/BF01569631Search in Google Scholar
[16] Handriková, G., Štefuca, V., Polakovič, M., and Báleš, V., Enzyme Microb. Technol. 18, 581 (1996). http://dx.doi.org/10.1016/0141-0229(95)00150-610.1016/0141-0229(95)00150-6Search in Google Scholar
© 2006 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Coupled membrane process applied to fruit juice concentration
- Residence time distribution study for the catalytic packing MULTIPAK®
- Prediction of gaseous emissions from industrial stacks using an artificial intelligence method
- Production of process water using integrated membrane processes
- Kinetics of pyrolysis and properties of carbon black from a scrap tire
- Extraction of Re(VII) by neutral and basic extractants
- Multiple steady states in a CSTR with total condenser: Comparison of equilibrium and nonequilibrium models
- Influence of biomass on hydrodynamics of an internal loop airlift reactor
- Modelling of enzymatic reaction in an internal loop airlift reactor
- Safety analysis and risk identification for a tubular reactor using the HAZOP methodology
- Soil adsorption defluoridation of drinking water for an Ethiopian rural community
- Isolation and identification of anthraquinones of Caloplaca cerina and Cassia tora
- Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans
Articles in the same Issue
- Coupled membrane process applied to fruit juice concentration
- Residence time distribution study for the catalytic packing MULTIPAK®
- Prediction of gaseous emissions from industrial stacks using an artificial intelligence method
- Production of process water using integrated membrane processes
- Kinetics of pyrolysis and properties of carbon black from a scrap tire
- Extraction of Re(VII) by neutral and basic extractants
- Multiple steady states in a CSTR with total condenser: Comparison of equilibrium and nonequilibrium models
- Influence of biomass on hydrodynamics of an internal loop airlift reactor
- Modelling of enzymatic reaction in an internal loop airlift reactor
- Safety analysis and risk identification for a tubular reactor using the HAZOP methodology
- Soil adsorption defluoridation of drinking water for an Ethiopian rural community
- Isolation and identification of anthraquinones of Caloplaca cerina and Cassia tora
- Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans