Abstract
A model approach to Hazard and Operability (HAZOP) analysis is presented based on the mathematical modeling of a process unit where both the steady-state analysis, including the analysis of the steady states multiplicity and stability, and the dynamic simulation are used. Heterogeneous tubular reactor for the ethylene oxide production from ethylene and oxygen was chosen to identify potential hazards for real system. The computer code DYNHAZ was developed consisting of a process simulator and a generator of the HAZOP algorithm.
[1] Kletz, T. A., HAZOP and HAZAN. Identifying and Assessing Process Industry Hazards, 4th Edition, Chapter 2. IChemE, UK, 1999. Search in Google Scholar
[2] Shimada, Y., Suzuki, K., and Sayama H., Comput. Chem. Eng. 20, 905 (1996). http://dx.doi.org/10.1016/0098-1354(95)00187-510.1016/0098-1354(95)00187-5Search in Google Scholar
[3] Weatherill, T. and Cameron, I. T., Comput. Chem. Eng. 13, 1229 (1989). http://dx.doi.org/10.1016/0098-1354(89)87028-010.1016/0098-1354(89)87028-0Search in Google Scholar
[4] Göring, M. and Schecker, H. G., Comput. Chem. Eng. 17, 429 (1993). http://dx.doi.org/10.1016/0098-1354(93)80262-L10.1016/0098-1354(93)80262-LSearch in Google Scholar
[5] Venkatasubramanian, V. and Vaidhyanathan, R., AIChE J. 40, 496 (1994). http://dx.doi.org/10.1002/aic.69040031110.1002/aic.690400311Search in Google Scholar
[6] Parmar, J. C. and Lees, F. P., Reliab. Eng. Syst. Safe. 17, 277 (1987). Search in Google Scholar
[7] Srinivasan, R. and Venkatasubramanian, V., Comput. Chem. Eng. 22, 961 (1998). http://dx.doi.org/10.1016/S0098-1354(98)00190-210.1016/S0098-1354(98)00190-2Search in Google Scholar
[8] Waters, A. and Ponton, J. W., Chem. Eng. Res. Des. 67, 407 (1989). Search in Google Scholar
[9] Catino, C. A. and Ungar, L. H., AIChE J. 41, 97 (1995). http://dx.doi.org/10.1002/aic.69041011010.1002/aic.690410110Search in Google Scholar
[10] Dimitriadis, V. D., Hackenberg, J., Shah, N., and Pantelides, C. C., Comput. Chem. Eng. 20, 503 (1996). http://dx.doi.org/10.1016/0098-1354(96)00093-210.1016/0098-1354(96)00093-2Search in Google Scholar
[11] Graf, H. and Schmidt-Traub, H., Comput. Chem. Eng. 25, 61 (2001). http://dx.doi.org/10.1016/S0098-1354(00)00633-510.1016/S0098-1354(00)00633-5Search in Google Scholar
[12] Leone, H., Comput. Chem. Eng. 20, 369 (1996). http://dx.doi.org/10.1016/0098-1354(96)00072-510.1016/0098-1354(96)00072-5Search in Google Scholar
[13] Larkin, F. D., Rushton, A. R., Chung, P. W. H., Lees, F. P., McCoy, S. A., and Wakeman, S. J., Hazards XIII Process Safety — The Future, IChemE Symposium Series No. 141, 337 (1997). Search in Google Scholar
[14] Venkatasubramanian, V. and Chan, K., AIChE J. 35, 1993 (1989). http://dx.doi.org/10.1002/aic.69035121010.1002/aic.690351210Search in Google Scholar
[15] Mushtaq, F. and Chung, P. W. H., J. Loss. Prevent. Proc. 13, 41 (2000). http://dx.doi.org/10.1016/S0950-4230(99)00054-610.1016/S0950-4230(99)00054-6Search in Google Scholar
[16] Venkatasubramanian, V., Zhao, J., and Viswanathan, S., Comput. Chem. Eng. 24, 2291 (2000). http://dx.doi.org/10.1016/S0098-1354(00)00573-110.1016/S0098-1354(00)00573-1Search in Google Scholar
[17] Dhurjati, P. S., Lamb, D. E., and Chester, D. C., in Proceedings of the 1st FOCAPO Conference (Reklaitis, G. V. and Spriggs, L. H. D., Editors) p. 589. Elsevier, New York, 1987. Search in Google Scholar
[18] Froment, G. F. and Bischoff, K. B., Chemical Reactor Analysis and Design. Wiley, New York, 1990. Search in Google Scholar
[19] Shacham, M., Brauner, N., and Cutlip, M. B., Comput. Chem. Eng. 24, 415 (2000). http://dx.doi.org/10.1016/S0098-1354(00)80001-010.1016/S0098-1354(00)80001-0Search in Google Scholar
[20] Molnár, A., Markoš, J., and Jelemenský, L’., Chem. Eng. Res. Des. 83, 177 (2005). http://dx.doi.org/10.1205/cherd.0415110.1205/cherd.04151Search in Google Scholar
[21] Molnár, A., Markoš, J., and Jelemenský, L’., J. Loss. Prevent. Proc. 16, 373 (2003). http://dx.doi.org/10.1016/S0950-4230(03)00069-X10.1016/S0950-4230(03)00069-XSearch in Google Scholar
[22] Švandová, Z., Jelemenský, L’., Markoš, J., and Molnár, A., Trans. IChemE. 83, 463 (2005). Search in Google Scholar
[23] Wu, H., Morbidelli, M., and Varma, A., AIChE J. 44, 1157 (1998). http://dx.doi.org/10.1002/aic.69044051310.1002/aic.690440513Search in Google Scholar
[24] Westersterp, K. R. and Ptasinski, K. J., Chem. Eng. Sci. 39, 245 (1984). http://dx.doi.org/10.1016/0009-2509(84)80024-X10.1016/0009-2509(84)80024-XSearch in Google Scholar
© 2006 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Coupled membrane process applied to fruit juice concentration
- Residence time distribution study for the catalytic packing MULTIPAK®
- Prediction of gaseous emissions from industrial stacks using an artificial intelligence method
- Production of process water using integrated membrane processes
- Kinetics of pyrolysis and properties of carbon black from a scrap tire
- Extraction of Re(VII) by neutral and basic extractants
- Multiple steady states in a CSTR with total condenser: Comparison of equilibrium and nonequilibrium models
- Influence of biomass on hydrodynamics of an internal loop airlift reactor
- Modelling of enzymatic reaction in an internal loop airlift reactor
- Safety analysis and risk identification for a tubular reactor using the HAZOP methodology
- Soil adsorption defluoridation of drinking water for an Ethiopian rural community
- Isolation and identification of anthraquinones of Caloplaca cerina and Cassia tora
- Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans
Articles in the same Issue
- Coupled membrane process applied to fruit juice concentration
- Residence time distribution study for the catalytic packing MULTIPAK®
- Prediction of gaseous emissions from industrial stacks using an artificial intelligence method
- Production of process water using integrated membrane processes
- Kinetics of pyrolysis and properties of carbon black from a scrap tire
- Extraction of Re(VII) by neutral and basic extractants
- Multiple steady states in a CSTR with total condenser: Comparison of equilibrium and nonequilibrium models
- Influence of biomass on hydrodynamics of an internal loop airlift reactor
- Modelling of enzymatic reaction in an internal loop airlift reactor
- Safety analysis and risk identification for a tubular reactor using the HAZOP methodology
- Soil adsorption defluoridation of drinking water for an Ethiopian rural community
- Isolation and identification of anthraquinones of Caloplaca cerina and Cassia tora
- Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans