Pitcher Accuracy Through Catcher Spotting: Assessing Rater Reliability
- 
            
            
        Andrew Thomas
        
Pitcher intent, as measured by the position of the catcher's glove before a pitch is thrown, is an element of baseball that is regularly observed by commentators (he's missing his spots) but remains an uncaptured aspect of statistical analysis of the game, offering many potential aspects on pitcher performance that have yet to be exploited. In order to collect this data systematically for public consumption (a far from trivial task), I propose and design a number of mechanisms for manual collection of this data from video playback using an offine charting approach, the direct indication of catcher position on the video, or a combination of the two. Through a pilot study conducted via a web applet, I find that there are considerable advantages to the direct-on-video method of charting catcher spots, including a higher inter-rater reliability as a consequence of higher precision and fewer replays needed of each pitch for a measurement to be taken, suggesting that direct video analysis, rather than lower-tech zone assessment, will be the preferred method for collecting catcher spotting data as the method becomes more popular.
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Conference Paper
- Uncovering Europe's Best Goalscorers from the 2009-2010 Season
- Dynamic Effort, Sustainability, Myopia, and 110% Effort
- The Intra-Match Home Advantage in Australian Rules Football
- The Relationship between Leader Experience and Team Performance in Cross-Sectional and Longitudinal Designs
- Stratified Odds Ratios for Evaluating NBA Players Based on their Plus/Minus Statistics
- Dependence Relationships between On Field Performance, Wins, and Payroll in Major League Baseball
- Optimal Dynamic Clustering Through Relegation and Promotion: How to Design a Competitive Sports League
- Perception ? Reality: Analyzing Specific Allegations of NBA Referee Bias
- NFL Prediction using Committees of Artificial Neural Networks
- An Alternative to the NFL Draft Pick Value Chart Based upon Player Performance
- Monte Carlo Simulation for High School Football Playoff Seed Projection
- Defining the Performance Coefficient in Golf: A Case Study at the 2009 Masters
- Reconsideration of the Best Batting Order in Baseball: Is the Order to Maximize the Expected Number of Runs Really the Best?
- Never Too Late to Win
- An Extension of the Pythagorean Expectation for Association Football
- Pitcher Accuracy Through Catcher Spotting: Assessing Rater Reliability
- Valuing Nostalgia: The Case of the Topps 1957 Baseball Cards
Articles in the same Issue
- Conference Paper
- Uncovering Europe's Best Goalscorers from the 2009-2010 Season
- Dynamic Effort, Sustainability, Myopia, and 110% Effort
- The Intra-Match Home Advantage in Australian Rules Football
- The Relationship between Leader Experience and Team Performance in Cross-Sectional and Longitudinal Designs
- Stratified Odds Ratios for Evaluating NBA Players Based on their Plus/Minus Statistics
- Dependence Relationships between On Field Performance, Wins, and Payroll in Major League Baseball
- Optimal Dynamic Clustering Through Relegation and Promotion: How to Design a Competitive Sports League
- Perception ? Reality: Analyzing Specific Allegations of NBA Referee Bias
- NFL Prediction using Committees of Artificial Neural Networks
- An Alternative to the NFL Draft Pick Value Chart Based upon Player Performance
- Monte Carlo Simulation for High School Football Playoff Seed Projection
- Defining the Performance Coefficient in Golf: A Case Study at the 2009 Masters
- Reconsideration of the Best Batting Order in Baseball: Is the Order to Maximize the Expected Number of Runs Really the Best?
- Never Too Late to Win
- An Extension of the Pythagorean Expectation for Association Football
- Pitcher Accuracy Through Catcher Spotting: Assessing Rater Reliability
- Valuing Nostalgia: The Case of the Topps 1957 Baseball Cards