Stratified Odds Ratios for Evaluating NBA Players Based on their Plus/Minus Statistics
-
Douglas M Okamoto
In this paper, I estimate adjusted odds ratios by fitting stratified logistic regression models to binary response variables, games won or lost, with plus/minus statistics as explanatory variables. Adapted from ice hockey, the plus/minus statistic credits an NBA player one or more points whenever his team scores while he is on the basketball court. Conversely, the player is debited minus one or more points whenever the opposing team scores. Throughout the NBA season, the leagues better players are likely to have positive plus/minus statistics as reported by Yahoo!Sports and 82games.com. Crude or unadjusted odds ratios estimate the relative probabilities of a player having a positive plus/minus in a win, versus a negative plus/minus in a loss. Home and away games are twin strata with teams playing 41 home games and 41 road games during an 82-game regular season. Stratum-specific odds ratios vary because some players perform better at home than on the road and vice versa. In order to adjust for home court advantage, stratified odds ratios and their 95 percent confidence intervals are estimated for each of the Los Angeles Lakers during the 20092010 regular season.
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Conference Paper
- Uncovering Europe's Best Goalscorers from the 2009-2010 Season
- Dynamic Effort, Sustainability, Myopia, and 110% Effort
- The Intra-Match Home Advantage in Australian Rules Football
- The Relationship between Leader Experience and Team Performance in Cross-Sectional and Longitudinal Designs
- Stratified Odds Ratios for Evaluating NBA Players Based on their Plus/Minus Statistics
- Dependence Relationships between On Field Performance, Wins, and Payroll in Major League Baseball
- Optimal Dynamic Clustering Through Relegation and Promotion: How to Design a Competitive Sports League
- Perception ? Reality: Analyzing Specific Allegations of NBA Referee Bias
- NFL Prediction using Committees of Artificial Neural Networks
- An Alternative to the NFL Draft Pick Value Chart Based upon Player Performance
- Monte Carlo Simulation for High School Football Playoff Seed Projection
- Defining the Performance Coefficient in Golf: A Case Study at the 2009 Masters
- Reconsideration of the Best Batting Order in Baseball: Is the Order to Maximize the Expected Number of Runs Really the Best?
- Never Too Late to Win
- An Extension of the Pythagorean Expectation for Association Football
- Pitcher Accuracy Through Catcher Spotting: Assessing Rater Reliability
- Valuing Nostalgia: The Case of the Topps 1957 Baseball Cards
Articles in the same Issue
- Conference Paper
- Uncovering Europe's Best Goalscorers from the 2009-2010 Season
- Dynamic Effort, Sustainability, Myopia, and 110% Effort
- The Intra-Match Home Advantage in Australian Rules Football
- The Relationship between Leader Experience and Team Performance in Cross-Sectional and Longitudinal Designs
- Stratified Odds Ratios for Evaluating NBA Players Based on their Plus/Minus Statistics
- Dependence Relationships between On Field Performance, Wins, and Payroll in Major League Baseball
- Optimal Dynamic Clustering Through Relegation and Promotion: How to Design a Competitive Sports League
- Perception ? Reality: Analyzing Specific Allegations of NBA Referee Bias
- NFL Prediction using Committees of Artificial Neural Networks
- An Alternative to the NFL Draft Pick Value Chart Based upon Player Performance
- Monte Carlo Simulation for High School Football Playoff Seed Projection
- Defining the Performance Coefficient in Golf: A Case Study at the 2009 Masters
- Reconsideration of the Best Batting Order in Baseball: Is the Order to Maximize the Expected Number of Runs Really the Best?
- Never Too Late to Win
- An Extension of the Pythagorean Expectation for Association Football
- Pitcher Accuracy Through Catcher Spotting: Assessing Rater Reliability
- Valuing Nostalgia: The Case of the Topps 1957 Baseball Cards