Startseite Letter. Crystal structure of uchucchacuaite, AgMnPb3Sb5S12, and its relationship with ramdohrite and fizélyite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Letter. Crystal structure of uchucchacuaite, AgMnPb3Sb5S12, and its relationship with ramdohrite and fizélyite

  • H. Yang , R.T. Downs , S.H. Evans , M.N. Feinglos und K.T. Tait EMAIL logo
Veröffentlicht/Copyright: 2. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Uchucchacuaite, ideally AgMnPb3Sb5S12, was originally reported as orthorhombic, with possible space group Pmmm, P222, or Pmm2, and unit-cell parameters a = 12.67, b = 19.32, and c = 4.38 Å obtained from powder X‑ray diffraction data (Moëlo et al. 1984a). Using single-crystal X‑ray diffraction, we examined two uchucchacuaite samples, one from the type locality, Uchucchacua, Peru, and the other from Hokkaido, Japan (designated as R100213 and R070760, respectively). Our results show that uchucchacuaite is isostructural with ramdohrite and fizélyite, with monoclinic symmetry (P21/n) and the unit-cell parameters a = 19.3645(11), b = 12.7287(8), c = 8.7571(6) Å, β = 90.059(3)° for R100213 and a = 19.3462(7), b = 12.7251(5), c = 8.7472(3) Å, β = 90.017(2)° for R070760. Both samples are pervasively twinned and the twin refinements yielded the final R1 factors of 0.037 and 0.031 for R100213 and R070760, respectively. The chemical compositions determined from electron microprobe analysis are Ag0.99(Mn0.92Pb0.03Sb0.02Bi0.01)Σ=0.98Pb3.00Sb5.00S12.00 for R100213 and Ag1.00(Mn0.82Sb0.11Ag0.04Bi0.02)Σ=0.99Pb2.98Sb5.00S12.00 for R070760. The key structural difference among uchucchacuaite, ramdohrite, and fizélyite lies in the cations occupying the M2 site, which can be expressed with a general structural formula as Ag(M2+2yAg½-ySb½-y)Pb3Sb5S12, where M2+ represents divalent cations with 0 ≤ y ≤ ½. From the current list of IMA-defined minerals, we consider M = Cd with y = 0.125 for ramdohrite, M = Pb with y = 0.25 for fizélyite, and M = Mn with y = 0.5 for uchucchacuaite. Associated with the variation in the average M2 cation size from fizélyite (1.078 Å) to ramdohrite (0.955 Å) and uchucchacuaite (0.83 Å) is the significant decrease in the average M2-S bond distance from 2.917 to 2.834, and 2.654 Å, respectively, as well as corresponding variations in the unit-cell b dimension from ~13.23 to 13.06 and 12.73 Å.

Received: 2011-2-15
Accepted: 2011-3-28
Published Online: 2015-4-2
Published in Print: 2011-7-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Needs and opportunities in mineral evolution research
  2. Rutile inclusions in quartz crystals record decreasing temperature and pressure during the exhumation of the Su-Lu UHP metamorphic belt in Donghai, East China
  3. A first-principles study of the phase transition from Holl-I to Holl-II in the composition KAlSi3O8
  4. Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: Description and crystal structure refinement
  5. Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements
  6. Quantitative determination of chrysotile in massive serpentinites using DTA: Implications for asbestos determinations
  7. In situ observation of the crystallization pressure induced by halite crystal growth in a microfluidic channel
  8. Microstructures of the larval shell of a pearl oyster, Pinctada fucata, investigated by FIB-TEM technique
  9. Magnesium quantification in calcites [(Ca,Mg)CO3] by Rietveld-based XRD analysis: Revisiting a well-established method
  10. The effect of Fe on olivine H2O storage capacity: Consequences for H2O in the martian mantle
  11. Kinetics of thermal transformation of partially dehydroxylated pyrophyllite
  12. Dehydration of the natural zeolite goosecreekite CaAl2Si6O16·5H2O upon stepwise heating: A single-crystal and powder X-ray study
  13. Incorporation mechanisms of Ta and Nb in zircon and implications for pegmatitic systems
  14. Variable-temperature 27Al and 29Si NMR studies of synthetic forsterite and Fe-bearing Dora Maira pyrope garnet: Temperature dependence and mechanisms of paramagnetically shifted peaks
  15. Calibrating Ti concentrations in quartz for SIMS determinations using NIST silicate glasses and application to the TitaniQ geothermobarometer
  16. Crystal structure of Na3Fe(SO4)3: A high-temperature product (∼400 °C) of sideronatrite [Na2Fe(SO4)2OH⋅3H2O]
  17. Evidence for boron incorporation into the serpentine crystal structure
  18. Structure refinement of Ag-free heyrovskýite from Vulcano (Aeolian Islands, Italy)
  19. Microtextures, microchemistry, and mineralogy of basaltic glass alteration, Jeju Island, Korea, with implications for elemental behavior
  20. Orientation of channel carbonate ions in apatite: Effect of pressure and composition
  21. Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the Earth’s core
  22. Yttriaite-(Y): The natural occurrence of Y2O3 from the Bol’shaya Pol’ya River, Subpolar Urals, Russia
  23. Identification and characterization of nanosized tripuhyite in soil near Sb mine tailings
  24. Letter. High-pressure I2/c-P21/c phase transformation in SrAl2Si2O8 feldspar
  25. Letter. Crystal structure of uchucchacuaite, AgMnPb3Sb5S12, and its relationship with ramdohrite and fizélyite
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2011.3809/html
Button zum nach oben scrollen