Home Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements
Article
Licensed
Unlicensed Requires Authentication

Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements

  • Mario Tribaudino EMAIL logo , Marco Bruno , Fabrizio Nestola , Daria Pasqual and Ross J. Angel
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

Powder X‑ray diffraction patterns between 90 and 935 K have been collected for nine plagioclase samples, with different compositions and degree of Al-Si order. The refined volumes have been modeled using the Wallace and Suzuki formulations based on the Mie-Grüneisen EOS. No significant difference has been found between the Suzuki and Wallace formulations, and between the Einstein and Debye approximations of lattice energy. A Wallace model with the first derivative of the bulk modulus constrained to the experimentally determined values leads to refined Grüneisen parameters between 0.49 and 0.41, without any definite trend between albite and anorthite; the Einstein temperature in intermediate plagioclase is θE - 650 K, but it is lower in albite [θE = 453(5) K].

A good fit with experimental heat capacity data for the An60Ab40 composition has been found using two Einstein-like oscillators with θE1 = 230(3) K and θE2 = 952(7) K, XθE1 = 0.391(5). The change with temperature in An60Ab40 of the Grüneisen parameter is small at T > 150 K, with a slight decrease with temperature. Similar results could be obtained by independent refinement of an Einstein model with two oscillators to the volume data for the same composition [θE1 = 205(30) K, θE2 = 873(52) K, and X = 0.36(4)].

The components of the thermal strain tensor with temperature have been calculated and confirm that the greatest deformation is along the a* axis, i.e., along the extension direction of the crankshaft chains of the feldspar structure. Anomalous behavior of the strain tensor components in the a-c plane has been observed in albite and An27Ab73, and is related to an increase in the c unit-cell parameter with decreasing temperature.

Received: 2010-10-13
Accepted: 2011-2-17
Published Online: 2015-4-2
Published in Print: 2011-7-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Needs and opportunities in mineral evolution research
  2. Rutile inclusions in quartz crystals record decreasing temperature and pressure during the exhumation of the Su-Lu UHP metamorphic belt in Donghai, East China
  3. A first-principles study of the phase transition from Holl-I to Holl-II in the composition KAlSi3O8
  4. Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: Description and crystal structure refinement
  5. Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements
  6. Quantitative determination of chrysotile in massive serpentinites using DTA: Implications for asbestos determinations
  7. In situ observation of the crystallization pressure induced by halite crystal growth in a microfluidic channel
  8. Microstructures of the larval shell of a pearl oyster, Pinctada fucata, investigated by FIB-TEM technique
  9. Magnesium quantification in calcites [(Ca,Mg)CO3] by Rietveld-based XRD analysis: Revisiting a well-established method
  10. The effect of Fe on olivine H2O storage capacity: Consequences for H2O in the martian mantle
  11. Kinetics of thermal transformation of partially dehydroxylated pyrophyllite
  12. Dehydration of the natural zeolite goosecreekite CaAl2Si6O16·5H2O upon stepwise heating: A single-crystal and powder X-ray study
  13. Incorporation mechanisms of Ta and Nb in zircon and implications for pegmatitic systems
  14. Variable-temperature 27Al and 29Si NMR studies of synthetic forsterite and Fe-bearing Dora Maira pyrope garnet: Temperature dependence and mechanisms of paramagnetically shifted peaks
  15. Calibrating Ti concentrations in quartz for SIMS determinations using NIST silicate glasses and application to the TitaniQ geothermobarometer
  16. Crystal structure of Na3Fe(SO4)3: A high-temperature product (∼400 °C) of sideronatrite [Na2Fe(SO4)2OH⋅3H2O]
  17. Evidence for boron incorporation into the serpentine crystal structure
  18. Structure refinement of Ag-free heyrovskýite from Vulcano (Aeolian Islands, Italy)
  19. Microtextures, microchemistry, and mineralogy of basaltic glass alteration, Jeju Island, Korea, with implications for elemental behavior
  20. Orientation of channel carbonate ions in apatite: Effect of pressure and composition
  21. Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the Earth’s core
  22. Yttriaite-(Y): The natural occurrence of Y2O3 from the Bol’shaya Pol’ya River, Subpolar Urals, Russia
  23. Identification and characterization of nanosized tripuhyite in soil near Sb mine tailings
  24. Letter. High-pressure I2/c-P21/c phase transformation in SrAl2Si2O8 feldspar
  25. Letter. Crystal structure of uchucchacuaite, AgMnPb3Sb5S12, and its relationship with ramdohrite and fizélyite
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2011.3722/html
Scroll to top button