Lead-tellurium oxysalts from Otto Mountain near Baker, California: V. Timroseite, Pb2Cu52+(Te6+O6)2(OH)2, and paratimroseite, Pb2Cu42+(Te6+O6)2(H2O)2, two new tellurates with Te-Cu polyhedral sheets
Abstract
Timroseite, Pb2Cu52+(Te6+O6)2(OH)2, and paratimroseite, Pb2Cu42+(Te6+O6)2(H2O)2, are two new tellurates from Otto Mountain near Baker, California. Timroseite is named in honor of Timothy (Tim) P. Rose and paratimroseite is named for its relationship to timroseite. Both new minerals occur on fracture surfaces and in small vugs in brecciated quartz veins. Timroseite is directly associated with acanthite, cerussite, bromine-rich chlorargyrite, chrysocolla, gold, housleyite, iodargyrite, khinite-4O, markcooperite, ottoite, paratimroseite, thorneite, vauquelinite, and wulfenite. Paratimroseite is directly associated with calcite, cerussite, housleyite, khinite-4O, markcooperite, and timroseite. Timroseite is orthorhombic, space group P21nm, a = 5.2000(2), b = 9.6225(4), c = 11.5340(5) Å, V = 577.13(4) Å3, and Z = 2. Paratimroseite is orthorhombic, space group P212121, a = 5.1943(4), b = 9.6198(10), c = 11.6746(11) Å, V = 583.35(9) Å3, and Z = 2. Timroseite commonly occurs as olive to lime green, irregular, rounded masses and rarely in crystals as dark olive green, equant rhombs, and diamond-shaped plates in subparallel sheaf-like aggregates. It has a very pale yellowish green streak, dull to adamantine luster, a hardness of about 2½ (Mohs), brittle tenacity, irregular fracture, no cleavage, and a calculated density of 6.981 g/cm3. Paratimroseite occurs as vibrant “neon” green blades typically intergrown in irregular clusters and as lime green botryoids. It has a very pale green streak, dull to adamantine luster, a hardness of about 3 (Mohs), brittle tenacity, irregular fracture, good {001} cleavage, and a calculated density of 6.556 g/cm3. Timroseite is biaxial (+) with a large 2V, indices of refraction > 2, orientation X = b, Y = a, Z = c and pleochroism: X = greenish yellow, Y = yellowish green, Z = dark green (Z > Y > X). Paratimroseite is biaxial (-) with a large 2V, indices of refraction > 2, orientation X = c, Y = b, Z = a and pleochroism: X = light green, Y = green, Z = green (Y = Z >> X). Electron microprobe analysis of timroseite provided PbO 35.85, CuO 29.57, TeO3 27.75, Cl 0.04, H2O 1.38 (structure), O≡Cl -0.01, total 94.58 wt%; the empirical formula (based on O+Cl = 14) is Pb2.07 Cu2+4.80Te6+2.04O12(OH)1.98Cl0.02. Electron microprobe analysis of paratimroseite provided PbO 36.11, CuO 26.27, TeO3 29.80, Cl 0.04, H2O 3.01 (structure), O≡Cl -0.01, total 95.22 wt%; the empirical formula (based on O+Cl = 14) is Pb1.94Cu2+3.96Te6+2.03O12(H2O)1.99Cl0.01. The strongest powder X-ray diffraction lines for timroseite are [dobs in Å (hkl) I]: 3.693 (022) 43, 3.578 (112) 44, 3.008 (023) 84, 2.950 (113) 88, 2.732 (130) 100, 1.785 (multiple) 33, 1.475 (332) 36; and for paratimroseite 4.771 (101) 76, 4.463 (021) 32, 3.544 (120) 44, 3.029 (023,122) 100, 2.973 (113) 48, 2.665 (131) 41, 2.469 (114) 40, 2.246 (221) 34. The crystal structures of timroseite (R1 = 0.029) and paratimroseite (R1 = 0.039) are very closely related. The structures are based upon edge- and corner-sharing sheets of Te and Cu polyhedra parallel to (001) and the sheets in both structures are identical in topology and virtually identical in geometry. In timroseite, the sheets are joined to one another along c by sharing the apical O atoms of Cu octahedra, as well as by sharing edges and corners with an additional CuO5 square pyramid located between the sheets. The sheets in paratimroseite are joined only via Pb-O and H bonds.
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Ti-Al zoning of experimentally grown titanite in the system CaO-Al2O3-TiO2-SiO2-NaCl-H2O-(F): Evidence for small-scale fluid heterogeneity
- A new method for quantitative petrography based on image processing of chemical element maps: Part I. Mineral mapping applied to compacted bentonites
- A new method for quantitative petrography based on image processing of chemical element maps: Part II. Semi-quantitative porosity maps superimposed on mineral maps
- Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics
- (H3O)Fe(SO4)2 formed by dehydrating rhomboclase and its potential existence on Mars
- Crystal chemistry and low-temperature behavior of datolite: A single-crystal X-ray diffraction study
- Density and seismic velocities of chromitite body in oceanic mantle peridotite
- Packing schemes of cavities in selected clathrasils and zeolites and the analogous packings of atoms in crystal structures
- Temperature dependence of IR absorption of OH species in clinopyroxene
- Thermal behavior of vibrational phonons and hydroxyls of muscovite in dehydroxylation: In situ high-temperature infrared spectroscopic investigations
- Kinetics of Fe-oxidation/deprotonation process in Fe-rich phlogopite under isothermal conditions
- On the crystal chemistry of londonite [(Cs,K,Rb)Al4Be5B11O28]: A single-crystal neutron diffraction study at 300 and 20 K
- High-pressure melting of wüstite
- Primary Nb-Ta minerals in the Szklary pegmatite, Poland: New insights into controls of crystal chemistry and crystallization sequences
- Evolution of the interlayer space of hydrated montmorillonite as a function of temperature
- Morphology of pyrite in particulate matter from shallow submarine hydrothermal vents
- Influence of the fluid composition on diamond dissolution forms in carbonate melts
- Far infrared spectroscopy of carbonate minerals
- Assessment of the diamond-trap method for studying high-pressure fluids and melts and an improved freezing stage design for laser ablation ICP-MS analysis
- Françoisite-(Ce), a new mineral species from La Creusaz uranium deposit (Valais, Switzerland) and from Radium Ridge (Flinders Ranges, South Australia): Description and genesis
- Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: III. Thorneite, Pb6(Te26+O10)(CO3)Cl2(H2O), the first mineral with edge-sharing octahedral tellurate dimers
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb(UO2)Te6+O6, the first natural uranyl tellurate
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: V. Timroseite, Pb2Cu52+(Te6+O6)2(OH)2, and paratimroseite, Pb2Cu42+(Te6+O6)2(H2O)2, two new tellurates with Te-Cu polyhedral sheets
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: VI. Telluroperite, Pb3Te4+O4Cl2, the Te analog of perite and nadorite
- The determination of sulfate and sulfide species in hydrous silicate glasses using Raman spectroscopy
- The structure of crystals, glasses, and melts along the CaO-Al2O3 join: Results from Raman, Al L- and K-edge X-ray absorption, and 27Al NMR spectroscopy
- Ordering of iron vacancies in monoclinic jarosites
Articles in the same Issue
- Ti-Al zoning of experimentally grown titanite in the system CaO-Al2O3-TiO2-SiO2-NaCl-H2O-(F): Evidence for small-scale fluid heterogeneity
- A new method for quantitative petrography based on image processing of chemical element maps: Part I. Mineral mapping applied to compacted bentonites
- A new method for quantitative petrography based on image processing of chemical element maps: Part II. Semi-quantitative porosity maps superimposed on mineral maps
- Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics
- (H3O)Fe(SO4)2 formed by dehydrating rhomboclase and its potential existence on Mars
- Crystal chemistry and low-temperature behavior of datolite: A single-crystal X-ray diffraction study
- Density and seismic velocities of chromitite body in oceanic mantle peridotite
- Packing schemes of cavities in selected clathrasils and zeolites and the analogous packings of atoms in crystal structures
- Temperature dependence of IR absorption of OH species in clinopyroxene
- Thermal behavior of vibrational phonons and hydroxyls of muscovite in dehydroxylation: In situ high-temperature infrared spectroscopic investigations
- Kinetics of Fe-oxidation/deprotonation process in Fe-rich phlogopite under isothermal conditions
- On the crystal chemistry of londonite [(Cs,K,Rb)Al4Be5B11O28]: A single-crystal neutron diffraction study at 300 and 20 K
- High-pressure melting of wüstite
- Primary Nb-Ta minerals in the Szklary pegmatite, Poland: New insights into controls of crystal chemistry and crystallization sequences
- Evolution of the interlayer space of hydrated montmorillonite as a function of temperature
- Morphology of pyrite in particulate matter from shallow submarine hydrothermal vents
- Influence of the fluid composition on diamond dissolution forms in carbonate melts
- Far infrared spectroscopy of carbonate minerals
- Assessment of the diamond-trap method for studying high-pressure fluids and melts and an improved freezing stage design for laser ablation ICP-MS analysis
- Françoisite-(Ce), a new mineral species from La Creusaz uranium deposit (Valais, Switzerland) and from Radium Ridge (Flinders Ranges, South Australia): Description and genesis
- Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: III. Thorneite, Pb6(Te26+O10)(CO3)Cl2(H2O), the first mineral with edge-sharing octahedral tellurate dimers
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb(UO2)Te6+O6, the first natural uranyl tellurate
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: V. Timroseite, Pb2Cu52+(Te6+O6)2(OH)2, and paratimroseite, Pb2Cu42+(Te6+O6)2(H2O)2, two new tellurates with Te-Cu polyhedral sheets
- Lead-tellurium oxysalts from Otto Mountain near Baker, California: VI. Telluroperite, Pb3Te4+O4Cl2, the Te analog of perite and nadorite
- The determination of sulfate and sulfide species in hydrous silicate glasses using Raman spectroscopy
- The structure of crystals, glasses, and melts along the CaO-Al2O3 join: Results from Raman, Al L- and K-edge X-ray absorption, and 27Al NMR spectroscopy
- Ordering of iron vacancies in monoclinic jarosites