Home Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics
Article
Licensed
Unlicensed Requires Authentication

Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics

  • Lukas M. Keller EMAIL logo , Lutz C. Götze , Erik Rybacki , Georg Dresen and Rainer Abart
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

Reaction layer growth between two chemically different solids may be controlled by polycrystalline diffusion kinetics in the growing phase. The kinetics depend on the interplay between volume and grain boundary diffusion. Using spinel formation between single crystals of periclase and sapphire as an example, we quantify the effects of an applied mechanical stress on the bulk-transport properties of the reaction layer. The rate of spinel growth increases fourfold when stress normal to the reaction interface increases from 3 to 30 MPa due to stress-induced changes in grain boundary structure. At low applied stress, low-index (i.e., Σ3) “coincidence site lattice” grain boundaries with slow diffusion coefficients dominate, related to epitactic growth of spinel on sapphire. Increasing stress triggers epitactic growth of spinel on periclase, and causes sapphire-grown spinel grains to rotate out of epitaxy, and grain boundaries with fast diffusion coefficients dominate. This effect outweighs the hitherto emphasized influence of grain size on the bulk transport properties of polycrystals.

Received: 2009-8-15
Accepted: 2010-6-15
Published Online: 2015-4-2
Published in Print: 2010-10-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Ti-Al zoning of experimentally grown titanite in the system CaO-Al2O3-TiO2-SiO2-NaCl-H2O-(F): Evidence for small-scale fluid heterogeneity
  2. A new method for quantitative petrography based on image processing of chemical element maps: Part I. Mineral mapping applied to compacted bentonites
  3. A new method for quantitative petrography based on image processing of chemical element maps: Part II. Semi-quantitative porosity maps superimposed on mineral maps
  4. Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics
  5. (H3O)Fe(SO4)2 formed by dehydrating rhomboclase and its potential existence on Mars
  6. Crystal chemistry and low-temperature behavior of datolite: A single-crystal X-ray diffraction study
  7. Density and seismic velocities of chromitite body in oceanic mantle peridotite
  8. Packing schemes of cavities in selected clathrasils and zeolites and the analogous packings of atoms in crystal structures
  9. Temperature dependence of IR absorption of OH species in clinopyroxene
  10. Thermal behavior of vibrational phonons and hydroxyls of muscovite in dehydroxylation: In situ high-temperature infrared spectroscopic investigations
  11. Kinetics of Fe-oxidation/deprotonation process in Fe-rich phlogopite under isothermal conditions
  12. On the crystal chemistry of londonite [(Cs,K,Rb)Al4Be5B11O28]: A single-crystal neutron diffraction study at 300 and 20 K
  13. High-pressure melting of wüstite
  14. Primary Nb-Ta minerals in the Szklary pegmatite, Poland: New insights into controls of crystal chemistry and crystallization sequences
  15. Evolution of the interlayer space of hydrated montmorillonite as a function of temperature
  16. Morphology of pyrite in particulate matter from shallow submarine hydrothermal vents
  17. Influence of the fluid composition on diamond dissolution forms in carbonate melts
  18. Far infrared spectroscopy of carbonate minerals
  19. Assessment of the diamond-trap method for studying high-pressure fluids and melts and an improved freezing stage design for laser ablation ICP-MS analysis
  20. Françoisite-(Ce), a new mineral species from La Creusaz uranium deposit (Valais, Switzerland) and from Radium Ridge (Flinders Ranges, South Australia): Description and genesis
  21. Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic
  22. Lead-tellurium oxysalts from Otto Mountain near Baker, California: III. Thorneite, Pb6(Te26+O10)(CO3)Cl2(H2O), the first mineral with edge-sharing octahedral tellurate dimers
  23. Lead-tellurium oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb(UO2)Te6+O6, the first natural uranyl tellurate
  24. Lead-tellurium oxysalts from Otto Mountain near Baker, California: V. Timroseite, Pb2Cu52+(Te6+O6)2(OH)2, and paratimroseite, Pb2Cu42+(Te6+O6)2(H2O)2, two new tellurates with Te-Cu polyhedral sheets
  25. Lead-tellurium oxysalts from Otto Mountain near Baker, California: VI. Telluroperite, Pb3Te4+O4Cl2, the Te analog of perite and nadorite
  26. The determination of sulfate and sulfide species in hydrous silicate glasses using Raman spectroscopy
  27. The structure of crystals, glasses, and melts along the CaO-Al2O3 join: Results from Raman, Al L- and K-edge X-ray absorption, and 27Al NMR spectroscopy
  28. Ordering of iron vacancies in monoclinic jarosites
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2010.3372/html
Scroll to top button