Home Lead-tellurium oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb(UO2)Te6+O6, the first natural uranyl tellurate
Article
Licensed
Unlicensed Requires Authentication

Lead-tellurium oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb(UO2)Te6+O6, the first natural uranyl tellurate

  • Anthony R. Kampf EMAIL logo , Stuart J. Mills , Robert M. Housley , Joseph Marty and Brent Thorne
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

Markcooperite, Pb2(UO2)Te6+O6, is a new tellurate from Otto Mountain near Baker, California, named in honor of Mark A. Cooper of the University of Manitoba for his contributions to mineralogy. The new mineral occurs on fracture surfaces and in small vugs in brecciated quartz veins. Markcooperite is directly associated with bromian chlorargyrite, iodargyrite, khinite-4O, wulfenite, and four other new tellurates: housleyite, thorneite, ottoite, and timroseite. Various other secondary minerals occur in the veins, including two other new secondary tellurium minerals: paratimroseite and telluroperite. Markcooperite is monoclinic, space group P21/c, a = 5.722(2), b = 7.7478(2), c = 7.889(2) Å, β = 90.833(5)°, V = 349.7(2) Å3, and Z = 2. It occurs as pseudotetragonal prisms to 0.2 mm with the forms {100} and {011} and as botryoidal intergrowths to 0.3 mm in diameter; no twinning was observed. Markcooperite is orange and transparent, with a light orange streak and adamantine luster, and is non-fluorescent. Mohs hardness is estimated at 3. The mineral is brittle, with an irregular fracture and perfect {100} cleavage. The calculated density is 8.496 g/cm3 based on the empirical formula. Markcooperite is biaxial (+), with indices of refraction α = 2.11, β = 2.12, γ = 2.29 calculated using the Gladstone-Dale relationship, measured α-β birefringence of 0.01 and measured 2V of 30(5)°. The optical orientation is X = c, Y = b, Z = a. The mineral is slightly pleochroic in shades of orange, with absorption: X > Y = Z. No dispersion was observed. Electron microprobe analysis provided PbO 50.07, TeO3 22.64, UO3 25.01, Cl 0.03, O≡Cl -0.01, total 97.74 wt%; the empirical formula (based on O+Cl = 8) is Pb2.05U0.80Te6+1.18O7.99Cl0.01. The strongest powder X-ray diffraction lines are [dobs in Å (hkl) I]: 3.235 (120, 102, 1̅02) 100, 2.873 (200) 40, 2.985 (1̅21, 112, 121) 37, 2.774 (022) 30, 3.501 (021, 012) 29, 2.220 (221, 2̅21, 212) 23, 1.990 (222, 2̅22) 21, and 1.715 (320) 22. The crystal structure (R1 = 0.052) is based on sheets of corner-sharing uranyl square bipyramids and tellurate octahedra, with Pb atoms between the sheets. Markcooperite is the first compound to show Te6+ substitution for U6+ within the same crystallographic site. Markcooperite is structurally related to synthetic Pb(UO2)O2.

Received: 2010-1-28
Accepted: 2010-5-5
Published Online: 2015-4-2
Published in Print: 2010-10-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Ti-Al zoning of experimentally grown titanite in the system CaO-Al2O3-TiO2-SiO2-NaCl-H2O-(F): Evidence for small-scale fluid heterogeneity
  2. A new method for quantitative petrography based on image processing of chemical element maps: Part I. Mineral mapping applied to compacted bentonites
  3. A new method for quantitative petrography based on image processing of chemical element maps: Part II. Semi-quantitative porosity maps superimposed on mineral maps
  4. Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics
  5. (H3O)Fe(SO4)2 formed by dehydrating rhomboclase and its potential existence on Mars
  6. Crystal chemistry and low-temperature behavior of datolite: A single-crystal X-ray diffraction study
  7. Density and seismic velocities of chromitite body in oceanic mantle peridotite
  8. Packing schemes of cavities in selected clathrasils and zeolites and the analogous packings of atoms in crystal structures
  9. Temperature dependence of IR absorption of OH species in clinopyroxene
  10. Thermal behavior of vibrational phonons and hydroxyls of muscovite in dehydroxylation: In situ high-temperature infrared spectroscopic investigations
  11. Kinetics of Fe-oxidation/deprotonation process in Fe-rich phlogopite under isothermal conditions
  12. On the crystal chemistry of londonite [(Cs,K,Rb)Al4Be5B11O28]: A single-crystal neutron diffraction study at 300 and 20 K
  13. High-pressure melting of wüstite
  14. Primary Nb-Ta minerals in the Szklary pegmatite, Poland: New insights into controls of crystal chemistry and crystallization sequences
  15. Evolution of the interlayer space of hydrated montmorillonite as a function of temperature
  16. Morphology of pyrite in particulate matter from shallow submarine hydrothermal vents
  17. Influence of the fluid composition on diamond dissolution forms in carbonate melts
  18. Far infrared spectroscopy of carbonate minerals
  19. Assessment of the diamond-trap method for studying high-pressure fluids and melts and an improved freezing stage design for laser ablation ICP-MS analysis
  20. Françoisite-(Ce), a new mineral species from La Creusaz uranium deposit (Valais, Switzerland) and from Radium Ridge (Flinders Ranges, South Australia): Description and genesis
  21. Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic
  22. Lead-tellurium oxysalts from Otto Mountain near Baker, California: III. Thorneite, Pb6(Te26+O10)(CO3)Cl2(H2O), the first mineral with edge-sharing octahedral tellurate dimers
  23. Lead-tellurium oxysalts from Otto Mountain near Baker, California: IV. Markcooperite, Pb(UO2)Te6+O6, the first natural uranyl tellurate
  24. Lead-tellurium oxysalts from Otto Mountain near Baker, California: V. Timroseite, Pb2Cu52+(Te6+O6)2(OH)2, and paratimroseite, Pb2Cu42+(Te6+O6)2(H2O)2, two new tellurates with Te-Cu polyhedral sheets
  25. Lead-tellurium oxysalts from Otto Mountain near Baker, California: VI. Telluroperite, Pb3Te4+O4Cl2, the Te analog of perite and nadorite
  26. The determination of sulfate and sulfide species in hydrous silicate glasses using Raman spectroscopy
  27. The structure of crystals, glasses, and melts along the CaO-Al2O3 join: Results from Raman, Al L- and K-edge X-ray absorption, and 27Al NMR spectroscopy
  28. Ordering of iron vacancies in monoclinic jarosites
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2010.3513/html
Scroll to top button