Startseite The effect of fluid inclusion size on determination of homogenization temperature and density of liquid-rich aqueous inclusions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The effect of fluid inclusion size on determination of homogenization temperature and density of liquid-rich aqueous inclusions

  • András Fall EMAIL logo , J. Donald Rimstidt und Robert J. Bodnar
Veröffentlicht/Copyright: 1. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Homogenization temperature variations of several degrees Celsius or more are often observed within a group of fluid inclusions that appear to have all trapped the same homogeneous fluid at the same time and presumably at the same PTX conditions. For inclusions that homogenize at T ≤ ≈230°C, much of the observed variation can be attributed to the size of the inclusions. Larger inclusions homogenize at higher temperatures compared to smaller inclusions with the same density. The relationship between inclusion size and observed homogenization temperature is predicted by the Young-Laplace equation that relates the stability of a vapor bubble to the surface tension and pressure differential across the vapor-liquid interface. Vapor bubbles instantaneously collapse when the vapor bubble radius becomes less than the critical radius. During heating the critical radius of the vapor bubble is achieved at a lower temperature in the smaller inclusions. The critical vapor bubble radius varies from about 0.01 to ~3 μm for low-temperature aqueous fluid inclusions. The Gibbs surface free energy associated with the growth and collapse of vapor bubbles in pure H2O inclusions with critical radii ranging from 0.01 to 1 μm ranges from about 10-18 to 10-13 J/m2 and increases with both increasing critical vapor bubble radius and homogenization temperature. As a result of surface tension effects, the highest measured homogenization temperature, obtained from the largest inclusion in the group of coeval inclusions, most closely approximate the homogenization temperature that would be expected based on the inclusion density. For inclusions ranging from a few to several tens of micrometers in diameter and having densities such that the homogenization temperatures are approximately <230°C, homogenization temperatures may vary by about 1-3°C, depending on the inclusion size

Received: 2009-1-2
Accepted: 2009-7-16
Published Online: 2015-4-1
Published in Print: 2009-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Review Paper. Microbe-clay mineral interactions
  2. Chemical substitutions, paragenetic relations, and physical conditions of formation of högbomite in the Sittampundi layered anorthosite complex, South India
  3. Miguelromeroite, the Mn analogue of sainfeldite, and redefinition of villyaellenite as an ordered intermediate in the sainfeldite-miguelromeroite series
  4. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: Calaverite to metallic gold
  5. A statistical reassessment of the evidence for the racemic distribution of quartz enantiomorphs
  6. On the crystal structure and crystal chemistry of pollucite, (Cs,Na)16Al16Si32O96·nH2O: A natural microporous material of interest in nuclear technology
  7. The effect of fluid inclusion size on determination of homogenization temperature and density of liquid-rich aqueous inclusions
  8. Effect of SiO2, total FeO, Fe3+/Fe2+, and alkali elements in basaltic glasses on mid-infrared
  9. Influence of cation size on the low-temperature heat capacity of alkaline earth metasilicate glasses
  10. The high-pressure–high-temperature behavior of bassanite
  11. Geochemistry of reversible hydratable tephra from the Trans Mexican Volcanic Belt
  12. Physical contradictions and remedies using simple polythermal equations of state
  13. Thermodynamic and crystallographic properties of kornelite [Fe2(SO4)3·~7.75H2O] and paracoquimbite [Fe2(SO4)3·9H2O]
  14. Humidity-induced phase transitions of ferric sulfate minerals studied by in situ and ex situ X-ray diffraction
  15. In situ Raman spectroscopy of MgSiO3 enstatite up to 1550 K
  16. Optical spectroscopic study of tetrahedrally coordinated Co2+ in natural spinel and staurolite at different temperatures and pressures
  17. New insights into smectite illitization: A zoned K-bentonite revisited
  18. The hydrothermal conversion of kaolinite to kalsilite: Influence of time, temperature, and pH
  19. Sideronatrite, Na2Fe(SO4)2(OH)·3H2O: Crystal structure of the orthorhombic polytype and OD character analysis
  20. Anharmonic OH vibrations in brucite: Small pressure-induced redshift in the range 0–22 GPa
  21. Structural properties of biologically controlled hydrozincite: An HRTEM and NMR spectroscopic study
  22. Mechanism of wollastonite carbonation deduced from micro- to nanometer length scale observations
  23. Letter. Crystal structure of argentopyrite, AgFe2S3, and its relationship with cubanite
  24. Letter. Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, N.E. Oregon
  25. Letter. The influence of atomic size and charge of dissolved species on the diffusivity and viscosity of silicate melts
  26. Letter. Si-Al distribution in high-pressure CaAl4Si2O11 phase: A 29Si and 27Al NMR study
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2009.3186/html
Button zum nach oben scrollen