Occurrence of tuite and ahrensite in Zagami and their significance for shock-histories recorded in martian meteorites
Abstract
We report on the discovery of two high-pressure minerals, tuite and ahrensite, located in two small shock-induced melt pockets (SIMP 1 and 2) in the Zagami martian meteorite, coexisting with granular and acicular stishovite and seifertite. Tuite identified in this study has two formation pathways: decomposition of apatite and transformation of merrillite under high-P-T conditions. Chlorine-bearing products, presumably derived from the decomposition of apatite, are concentrated along the grain boundaries of tuite grains. Nanocrystalline ahrensite in the pyroxene clast in SIMP 2 is likely to be a decomposition product of pigeonite under high-P-T conditions by a solid-state transformation mechanism. The pressure and temperature conditions estimated from the high-pressure minerals in the shock-induced melt pockets are ~12–22 GPa and ~1100–1500 °C, respectively, although previous estimates of peak shock pressure are higher. This discrepancy probably represents the shift of kinetic relative to thermodynamic phase boundaries, in particular the comparatively small region that we examine here, rather than a principal disagreement between the peak shock conditions.
Funding statement: This study was financially supported by the National Natural Science Foundation of China (41973062), China Scholarship Council (201804910284), UK STFC grants to MA (ST/P000657/1 and ST/T000228/1), the key research program of the Institute of Geology and Geophysics, CAS (IGGCAS-201905), Pre-research project on Civil Aerospace Technologies by CNSA (D020201 and D020203), and Beijing Municipal Science and Technology Commission (Z191100004319001).
Acknowledgments
The Zagami section was loaned by the National History Museum in New York. We thank A.E. Oliver Tschauner, reviewer Erin Walton, and another anonymous reviewer for their constructive suggestions and comments to improve the quality of the manuscript.
References cited
Akaogi, M., Yano, M., Tejima, Y., Iijima, M., and Kojitani, H. (2004) High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system. Physics of the Earth and Planetary Interiors, 143-144, 145–156.10.1016/j.pepi.2003.08.008Suche in Google Scholar
Baziotis, I.P., Liu, Y., DeCarli, P.S., Melosh, H.J., McSween, H.Y., Bodnar, R.J., and Taylor, L.A. (2013) The Tissint Martian meteorite as evidence for the largest impact excavation. Nature Communications, 4, 1404.10.1038/ncomms2414Suche in Google Scholar
Beck, P., Gillet, P., Gautron, L., Daniel, I., and El Goresy, A. (2004) A new natural high-pressure (Na,Ca)-hexaluminosilicate [(CaxNa1-x)Al3+xSi3-xO11] in shocked Martian meteorites. Earth and Planetary Science Letters, 219, 1–12.10.1016/S0012-821X(03)00695-2Suche in Google Scholar
Beck, P., Gillet, P., El Goresy, A., and Mostefaoui, S. (2005) Timescales of shock processes in chondritic and martian meteorites. Nature, 435, 1071–1074.10.1038/nature03616Suche in Google Scholar PubMed
Binns, R., Davis, R., and Reed, S. (1969) Ringwoodite, natural (Mg, Fe)2SiO4 spinel in the Tenham meteorite. Nature, 221, 943–944.10.1038/221943a0Suche in Google Scholar
Bläß, U.W. (2013) Shock-induced formation mechanism of seifertite in shergottites. Physics and Chemistry of Minerals, 40, 425–437.10.1007/s00269-013-0580-xSuche in Google Scholar
Boonsue, S., and Spray, J. (2012) Shock-induced phase transformations in melt pockets within martian meteorite NWA 4468. Spectroscopy Letters, 45, 127–134.10.1080/00387010.2011.614670Suche in Google Scholar
Chen, M., Sharp, T.G., El Goresy, A., Wopenka, B., and Xie, X. (1996) The majorite-pyrope + magnesiowüstite assemblage: Constraints on the history of shock veins in chondrites. Science, 271, 1570–1573.10.1126/science.271.5255.1570Suche in Google Scholar
Chen, M., Shu, J., Mao, H-K., Xie, X., and Hemley, R.J. (2003) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proceedings of the National Academy of Sciences of the United States of America, 100, 14651–14654.10.1073/pnas.2136599100Suche in Google Scholar PubMed PubMed Central
Chen, M., El Goresy, A., and Gillet, P. (2004) Ringwoodite lamellae in olivine: Clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs. Proceedings of the National Academy of Sciences, 101, 15033–15037.10.1073/pnas.0405048101Suche in Google Scholar PubMed PubMed Central
El Goresy, A., Chen, M., Gillet, P., and Dubrovinsky, L.S. (2000a) Shock-induced high-pressure phase transition of labradorite to hollandite “(Na47-Ca51-K2)” in Zagami and the assemblage hollandite “(Na80-Ca12-K8)” plus jadeite in L chondrites: Constraints to peak shock pressures. Meteoritics & Planetary Science, 35, A51.Suche in Google Scholar
El Goresy, A., Dubrovinsky, L., Sharp, T.G., Saxena, S.K., and Chen, M. (2000b) A monoclinic post-stishovite polymorph of silica in the Shergotty Meteorite. Science, 288, 1632–1635.10.1126/science.288.5471.1632Suche in Google Scholar PubMed
El Goresy, A., Dubrovinsky, L., Sharp, T.G., and Chen, M. (2004) Stishovite and post-stishovite polymorphs of silica in the shergotty meteorite: their nature, petrographic settings versus theoretical predictions and relevance to Earth’s mantle. Journal of Physics and Chemistry of Solids, 65, 1597–1608.10.1016/j.jpcs.2004.02.001Suche in Google Scholar
El Goresy, A., Dera, P., Sharp, T.G., Prewitt, C.T., Chen, M., Dubrovinsky, L., Wopenka, B., Boctor, N.Z., and Hemley, R.J. (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. European Journal of Mineralogy, 20, 523–528.10.1127/0935-1221/2008/0020-1812Suche in Google Scholar
El Goresy, A., Gillet, P., Miyahara, M., Ohtani, E., Ozawa, S., Beck, P., and Montagnac, G. (2013) Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages on Mars. Geochimica et Cosmochimica Acta, 101, 233–262.10.1016/j.gca.2012.10.002Suche in Google Scholar
Feng, L., Lin, Y., Hu, S., Xu, L., and Miao, B. (2011) Estimating compositions of natural ringwoodite in the heavily shocked Grove Mountains 052049 meteorite from Raman spectra. American Mineralogist, 96, 1480–1489.10.2138/am.2011.3679Suche in Google Scholar
Fritz, J., and Greshake, A. (2009) High-pressure phases in an ultramafic rock from Mars. Earth and Planetary Science Letters, 288, 619–623.10.1016/j.epsl.2009.10.030Suche in Google Scholar
Fritz, J., Greshake, A., and Fernandes, V.A. (2017) Revising the shock classification of meteorites. Meteoritics & Planetary Science, 52, 1216–1232.10.1111/maps.12845Suche in Google Scholar
Fritz, J., Greshake, A., Klementova, M., Wirth, R., Palatinus, L., Trønnes, R.G., Fernandes, V.A., Böttger, U., and Ferrière, L. (2020) Donwilhelmsite, [CaAl4 Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments. American Mineralogist, 105, 1704–1711.10.2138/am-2020-7393Suche in Google Scholar
Gasparik, T. (1990) Phase relations in the transition zone. Journal of Geophysical Research, 95, 15751–15769.10.1029/JB095iB10p15751Suche in Google Scholar
Gillet, P., Chen, M., Dubrovinsky, L., and El Goresy, A. (2000) Natural NaAlSi3O8- hollandite in the shocked Sixiangkou meteorite. Science, 287, 1633–1636.10.1126/science.287.5458.1633Suche in Google Scholar PubMed
Glass, B.P., Liu, S., and Leavens, P.B. (2002) Reidite: An impact-produced high-pressure polymorph of zircon found in marine sediments. American Mineralogist, 87, 562–565.10.2138/am-2002-0420Suche in Google Scholar
Greshake, A., Fritz, J., Böttger, U., and Goran, D. (2013) Shear-induced ringwoodite formation in the Martian shergottite Dar al Gani 670. Earth and Planetary Science Letters, 375, 383–394.10.1016/j.epsl.2013.06.002Suche in Google Scholar
Hu, J., and Sharp, T.G. (2016) High-pressure phases in shock-induced melt of the unique highly shocked LL6 chondrite Northwest Africa 757. Meteoritics & Planetary Science, 51, 1353–1369.10.1111/maps.12672Suche in Google Scholar
Hu, J., and Sharp, T.G. (2017) Back-transformation of high-pressure minerals in shocked chondrites: Low-pressure mineral evidence for strong shock. Geochimica et Cosmochimica Acta, 215, 277–294.10.1016/j.gca.2017.07.018Suche in Google Scholar
Hu, S., Li, Y., Gu, L., Tang, X., Zhang, T., Yamaguchi, A., Lin, Y., and Changela, H. (2020) Discovery of coesite from the martian shergottite Northwest Africa 8657. Geochimica et Cosmochimica Acta, 286, 404–407.10.1016/j.gca.2020.07.021Suche in Google Scholar
Jolliff, B.L., Hughes, J.M., Freeman, J.J., and Zeigler, R.A. (2006) Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. American Mineralogist, 91, 1583–1595.10.2138/am.2006.2185Suche in Google Scholar
Kayama, M., Tomioka, N., Ohtani, E., Seto, Y., Nagaoka, H., Gotze, J., Miyake, A., Ozawa, S., Sekine, T., Miyahara, M., and others. (2018) Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith. Science Advances, 4, eaar4378.10.1126/sciadv.aar4378Suche in Google Scholar
Langenhorst, F., and Deutsch, A. (2012) Shock metamorphism of minerals. Elements, 8, 31–36.10.2113/gselements.8.1.31Suche in Google Scholar
Langenhorst, F., and Poirier, J.-P. (2000a) ‘Eclogitic’ minerals in a shocked basaltic meteorite. Earth and Planetary Science Letters, 176, 259–265.10.1016/S0012-821X(00)00028-5Suche in Google Scholar
Langenhorst, F., and Poirier, J.-P. (2000b) Anatomy of black veins in Zagami: Clues to the formation of high-pressure phases. Earth and Planetary Science Letters, 184, 37–55.10.1016/S0012-821X(00)00317-4Suche in Google Scholar
Langenhorst, F., Stöffler, D., and Klein, D. (1991) Shock metamorphism of the Zagami achondrite. Lunar and Planetary Science Conference, 22.Suche in Google Scholar
Lin, Y., Feng, L., and Hu, S. (2011) High pressure mineral assemblages in the lherzolitic shergottite Grove Mountains (GRV) 020090. Japan Geoscience Union meeting, PPS05-03, Tokyo.Suche in Google Scholar
Litasov, K.D., and Podgornykh, N.M. (2017) Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. Journal of Raman Spectroscopy, 48, 1518–1527.10.1002/jrs.5119Suche in Google Scholar
Liu, L.-G. (1978) High-pressure phase transformations of albite, jadeite and nepheline. Earth and Planetary Science Letters, 37, 438–444.10.1016/0012-821X(78)90059-6Suche in Google Scholar
Ma, C. (2018) A closer look at shocked meteorites: Discovery of new high-pressure minerals. American Mineralogist, 103, 1521–1522.10.2138/am-2018-6710Suche in Google Scholar
Ma, C., Tschauner, O., Beckett, J.R., Liu, Y., Rossman, G.R., Zhuravlev, K., Prakapenka, V., Dera, P., and Taylor, L.A. (2015) Tissintite, (Ca,Na,◻) AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite. Earth and Planetary Science Letters, 422, 194–205.10.1016/j.epsl.2015.03.057Suche in Google Scholar
Ma, C., Tschauner, O., Beckett, J.R., Liu, Y., Rossman, G.R., Sinogeikin, S.V., Smith, J.S., and Taylor, L.A. (2016) Ahrensite, γ-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars. Geochimica et Cosmochimica Acta, 184, 240–256.10.1016/j.gca.2016.04.042Suche in Google Scholar
Ma, C., Tschauner, O., Beckett, J.R., Rossman, G.R., Prescher, C., Prakapenka, V.B., Bechtel, H.A., and Macdowell, A. (2018) Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the Zagami Martian meteorite. Meteoritics & Planetary Science, 53, 50–61.10.1111/maps.13000Suche in Google Scholar
Ma, C., Tschauner, O., Beckett, J.R., Liu, Y., Greenberg, E., and Prakapenka, V.B. (2019) Chenmingite, FeCr2O4 in the CaFe2O4-type structure, a shock-induced, high-pressure mineral in the Tissint martian meteorite. American Mineralogist, 104, 1521–1525.10.2138/am-2019-6999Suche in Google Scholar
Malavergne, V., Guyot, F., Benzerara, K., and Martinez, I. (2001) Description of new shock-induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteoritics & Planetary Science, 36, 1297–1305.10.1111/j.1945-5100.2001.tb01825.xSuche in Google Scholar
Martinez, M., Brearley, A.J., Trigo-Rodríguez, J.M., and Llorca, J. (2019) New observations on high-pressure phases in a shock melt vein in the Villalbeto de la Peña meteorite: Insights into the shock behavior of diopside. Meteoritics & Planetary Science, 54, 2845–2863.10.1111/maps.13391Suche in Google Scholar
McCoy, T.J., Taylor, G.J., and Keil, K. (1992) Zagami: Product of a two-stage magmatic history. Geochimica et Cosmochimica Acta, 56, 3571–3582.10.1016/0016-7037(92)90400-DSuche in Google Scholar
McCubbin, F.M., Shearer, C.K., Burger, P.V., Hauri, E.H., Wang, J., Elardo, S.M., and Papike, J.J. (2014) Volatile abundances of coexisting merrillite and apatite in the martian meteorite Shergotty: Implications for merrillite in hydrous magmas. American Mineralogist, 99, 1347–1354.10.2138/am.2014.4782Suche in Google Scholar
Miyahara, M., El Goresy, A., Ohtani, E., Nagase, T., Nishijima, M., Vashaei, Z., Ferroir, T., Gillet, P., Dubrovinsky, L., and Simionovici, A. (2008) Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins. Proceedings of the National Academy, 105, 8542–8547.10.1073/pnas.0801518105Suche in Google Scholar
Miyahara, M., El Goresy, A., Ohtani, E., Kimura, M., Ozawa, S., Nagase, T., and Nishijima, M. (2009) Fractional crystallization of olivine melt inclusion in shock-induced chondritic melt vein. Physics of the Earth and Planetary Interiors, 177, 116–121.10.1016/j.pepi.2009.08.001Suche in Google Scholar
Miyahara, M., Kaneko, S., Ohtani, E., Sakai, T., Nagase, T., Kayama, M., Nishido, H., and Hirao, N. (2013) Discovery of seifertite in a shocked lunar meteorite. Nature Communications, 4, 1737.10.1038/ncomms2733Suche in Google Scholar
Miyahara, M., Ohtani, E., Yamaguchi, A., Ozawa, S., Sakai, T., and Hirao, N. (2014) Discovery of coesite and stishovite in eucrite. Proceedings of the National Academy, 111, 10939–10942.10.1073/pnas.1404247111Suche in Google Scholar
Miyahara, M., Ohtani, E., El Goresy, A., Ozawa, S., and Gillet, P. (2016) Phase transition processes of olivine in the shocked Martian meteorite Tissint: Clues to origin of ringwoodite-, bridgmanite- and magnesiowüstite-bearing assemblages. Physics of the Earth and Planetary Interiors, 259, 18–28.10.1016/j.pepi.2016.08.006Suche in Google Scholar
Murayama, J.K., Nakai, S., Kato, M., and Kumazawa, M. (1986) A dense polymorph of Ca3(PO4)2: A high pressure phase of apatite decomposition and its geochemical significance. Physics of the Earth and Planetary Interiors, 44, 293–303.10.1016/0031-9201(86)90057-9Suche in Google Scholar
Ohtani, E., Ozawa, S., Miyahara, M., Ito, Y., Mikouchi, T., Kimura, M., Arai, T., Sato, K., and Hiraga, K. (2011) Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface. Proceedings of the National Academy, 108, 463–466.10.1073/pnas.1009338108Suche in Google Scholar PubMed PubMed Central
Pang, R.-L., Zhang, A.-C., Wang, S.-Z., Wang, R.-C., and Yurimoto, H. (2016) High-pressure minerals in eucrite suggest a small source crater on Vesta. Scientific Reports, 6, 26063.10.1038/srep26063Suche in Google Scholar PubMed PubMed Central
Pang, R.-L., Harries, D., Pollok, K., Zhang, A.-C., and Langenhorst, F. (2018) Vestaite, (Ti4+Fe2+)Ti34+O9, a new mineral in the shocked eucrite Northwest Africa 8003. American Mineralogist, 103, 1502–1511.10.2138/am-2018-6522Suche in Google Scholar
Petrova, E.V., and Grokhovsky, V.I. (2019) High pressure impacts on meteorites. Pure and Applied Chemistry, 91, 1857–1867.10.1515/pac-2018-1119Suche in Google Scholar
Putnis, A., and Price, G.D. (1979) High-pressure (Mg, Fe)2SiO4 phases in the Tenham chondritic meteorite. Nature, 280, 217–218.10.1038/280217a0Suche in Google Scholar
Sharp, T.G., and DeCarli, P.S. (2006) Shock effects in meteorites. Meteorites and the Early Solar System II, 943, 653–677.10.2307/j.ctv1v7zdmm.37Suche in Google Scholar
Sharp, T.G., Lingemann, C.M., Dupas, C., and Stöffler, D. (1997) Natural occurrence of MgSiO3-ilmenite and evidence for MgSiO3-perovskite in a shocked L chondrite. Science, 277, 352–355.10.1126/science.277.5324.352Suche in Google Scholar
Sharp, T.G., El Goresy, A., Wopenka, B., and Chen, M. (1999) A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events. Science, 284, 1511 –1513.10.1126/science.284.5419.1511Suche in Google Scholar
Sharp, T.G., Walton, E.L., Hu, J.P., and Agee, C. (2019) Shock conditions recorded in NWA 8159 martian augite basalt with implications for the impact cratering history on Mars. Geochimica et Cosmochimica Acta, 246, 197–212.10.1016/j.gca.2018.11.014Suche in Google Scholar
Shaw, C.S.J., and Walton, E. (2013) Thermal modeling of shock melts in Martian meteorites: Implications for preserving Martian atmospheric signatures and crystallization of high-pressure minerals from shock melts. Meteoritics & Planetary Science, 48, 758–770.10.1111/maps.12100Suche in Google Scholar
Skelton, R., and Walker, A.M. (2017) Ab initio crystal structure and elasticity of tuite, γ-Ca3(PO4)2, with implications for trace element partitioning in the lower mantle. Contributions to Mineralogy and Petrology, 172, 87.10.1007/s00410-017-1406-5Suche in Google Scholar
Stöffler, D., Ostertag, R., Jammes, C., Pfannschmidt, G., Gupta, P.S., Simon, S., Papike, J., and Beauchamp, R. (1986) Shock metamorphism and petrography of the Shergotty achondrite. Geochimica et Cosmochimica Acta, 50, 889–903.10.1016/0016-7037(86)90371-6Suche in Google Scholar
Stöffler, D., Keil, K., and Scott, E.R.D. (1991) Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 3845–3867.10.1016/0016-7037(91)90078-JSuche in Google Scholar
Tomioka, N., and Fujino, K. (1999) Akimotoite, (Mg,Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. American Mineralogist, 84, 267–271.10.2138/am-1999-0307Suche in Google Scholar
Tomioka, N., and Kimura, M. (2003) The breakdown of diopside to Ca-rich majorite and glass in a shocked H chondrite. Earth and Planetary Science Letters, 208, 271–278.10.1016/S0012-821X(03)00049-9Suche in Google Scholar
Tomioka, N., and Miyahara, M. (2017) High-pressure minerals in shocked meteorites. Meteoritics & Planetary Science, 52, 2017–2039.10.1111/maps.12902Suche in Google Scholar
Tschauner, O., and Ma, C. (2017) Stöfflerite, IMA 2017-062. CNMNC Newsletter. Mineralogical Magazine, 81, 1279–1286.Suche in Google Scholar
Tschauner, O., Ma, C., Beckett, J.R., Prescher, C., Prakapenka, V.B., and Rossman, G.R. (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346, 1100–1102.10.1126/science.1259369Suche in Google Scholar
Tschauner, O., Ma, C., Spray, J.G., Greenberg, E., and Prakapenka, V.B. (2021) Stöfflerite, (Ca,Na)(Si,Al)4O8 in the hollandite structure: A new high-pressure polymorph of anorthite from martian meteorite NWA 856. American Mineralogist, 106, 650–655.10.2138/am-2021-7563Suche in Google Scholar
Wadhwa, M., McCoy, T.J., Keil, K., and Crozaz, G. (1993) The chemical and physical evolution of late-stage melt in Zagami. Meteoritics, 28, 453–454.Suche in Google Scholar
Walton, E.L. (2013) Shock metamorphism of Elephant Moraine A79001: Implications for olivine-ringwoodite transformation and the complex thermal history of heavily shocked Martian meteorites. Geochimica et Cosmochimica Acta, 107, 299–315.10.1016/j.gca.2012.12.021Suche in Google Scholar
Walton, E.L., Sharp, T.G., Hu, J., and Filiberto, J. (2014) Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars. Geochimica et Cosmochimica Acta, 140, 334–348.10.1016/j.gca.2014.05.023Suche in Google Scholar
Wang, S.-Z., Zhang, A.-C., Pang, R.-L., Chen, J.-N., Gu, L.-X., and Wang, R.-C. (2017) Petrogenesis and shock metamorphism of the enriched lherzolitic shergottite Northwest Africa 7755. Meteoritics & Planetary Science, 52, 2437–2457.10.1111/maps.12931Suche in Google Scholar
Xie, X., Minitti, M.E., Chen, M., Mao, H.-K., Wang, D., Shu, J., and Fei, Y. (2002a) Natural high-pressure polymorph of merrillite in the shock veins of the Suizhou meteorite. Geochimica et Cosmochimica Acta, 66, 2439–2444.10.1016/S0016-7037(02)00833-5Suche in Google Scholar
Xie, Z., Tomioka, N., and Sharp, T. G. (2002b) Natural occurrence of Fe2SiO4-spinel in the shocked Umbarger L6 chondrite. American Mineralogist, 87, 1257–1260.10.2138/am-2002-8-926Suche in Google Scholar
Xie, X., Zhai, S., Chen, M., and Yang, H. (2013) Tuite, γ-Ca3(PO4)2, formed by chlorapatite decomposition in a shock vein of the Suizhou L6 chondrite. Meteoritics & Planetary Science, 48, 1515–1523.10.1111/maps.12143Suche in Google Scholar
Xie, X., Gu, X., and Chen, M. (2016) An occurrence of tuite, γ-Ca3(PO4)2, partly transformed from Ca-phosphates in the Suizhou meteorite. Meteoritics & Planetary Science, 51, 195–202.10.1111/maps.12577Suche in Google Scholar
Xing, W., Lin, Y., Zhang, C., Zhang, M., Hu, S., Hofmann, B.A., Sekine, T., Xiao, L., and Gu, L. (2020) Discovery of Reidite in the Lunar Meteorite Sayh al Uhaymir 169. Geophysical Research Letters, 47, e2020GL089583.10.1029/2020GL089583Suche in Google Scholar
Zhang, J., Li, B., Utsumi, W., and Liebermann, R.C. (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23, 1–10.10.1007/BF00202987Suche in Google Scholar
Zhang, A.-C., Hsu, W.-B., Floss, C., Li, X.-H., Li, Q.-L., Liu, Y., and Taylor, L.A. (2010) Petrogenesis of lunar meteorite Northwest Africa 2977: Constraints from in situ microprobe results. Meteoritics & Planetary Science, 45, 1929–1947.10.1111/j.1945-5100.2010.01131.xSuche in Google Scholar
© 2022 Mineralogical Society of America
Artikel in diesem Heft
- Periodic and non-periodic stacking in molybdenite (MoS2) revealed by STEM
- The effect of halogens (F, Cl) on the near-liquidus crystallinity of a hydrous trachyte melt
- Occurrence of tuite and ahrensite in Zagami and their significance for shock-histories recorded in martian meteorites
- Zolenskyite, FeCr2S4, a new sulfide mineral from the Indarch meteorite
- Refined estimation of Li in mica by a machine learning method
- Olivine in picrites from continental flood basalt provinces classified using machine learning
- The glass transition and the non-Arrhenian viscosity of carbonate melts
- Etching of fission tracks in monazite: Further evidence from optical and focused ion beam scanning electron microscopy
- The low-temperature shift of antigorite dehydration in the presence of sodium chloride: In situ diffraction study up to 3 GPa and 700 °C
- Chemistry-dependent Raman spectral features of glauconite and nontronite: Implications for mineral identification and provenance analysis
- Experimental determination of solubility constants of saponite at elevated temperatures in high ionic strength solutions
- Hydrothermal troctolite alteration at 300 and 400 °C: Insights from flexible Au-reaction cell batch experimental investigations
- Timescales and rates of intrusive and metamorphic processes determined from zircon and garnet in migmatitic granulite, Fiordland, New Zealand
- In situ chemical and isotopic analyses and element mapping of multiple-generation pyrite: Evidence of episodic gold mobilization and deposition for the Qiucun epithermal gold deposit in Southeast China
- Hydrothermal mineralization of celadonite: Hybridized fluid–basalt interaction in Janggi, Korea
- Gungerite, TlAs5Sb4S13, a new thallium sulfosalt with a complex structure containing covalent As-As bonds
- Nitscheite, (NH4)2[(UO2)2(SO4)3(H2O)2]·3H2O, a new mineral with an unusual uranyl-sulfate sheet
- Protocaseyite, a new decavanadate mineral containing a [Al4(OH)6(H2O)12]6+ linear tetramer, a novel isopolycation
- Fission-track etching in apatite: A model and some implications
- Hydrothermal monazite trumps rutile: Applying U-Pb geochronology to evaluate complex mineralization ages of the Katbasu Au-Cu deposit, Western Tianshan, Northwest China
- Erratum
Artikel in diesem Heft
- Periodic and non-periodic stacking in molybdenite (MoS2) revealed by STEM
- The effect of halogens (F, Cl) on the near-liquidus crystallinity of a hydrous trachyte melt
- Occurrence of tuite and ahrensite in Zagami and their significance for shock-histories recorded in martian meteorites
- Zolenskyite, FeCr2S4, a new sulfide mineral from the Indarch meteorite
- Refined estimation of Li in mica by a machine learning method
- Olivine in picrites from continental flood basalt provinces classified using machine learning
- The glass transition and the non-Arrhenian viscosity of carbonate melts
- Etching of fission tracks in monazite: Further evidence from optical and focused ion beam scanning electron microscopy
- The low-temperature shift of antigorite dehydration in the presence of sodium chloride: In situ diffraction study up to 3 GPa and 700 °C
- Chemistry-dependent Raman spectral features of glauconite and nontronite: Implications for mineral identification and provenance analysis
- Experimental determination of solubility constants of saponite at elevated temperatures in high ionic strength solutions
- Hydrothermal troctolite alteration at 300 and 400 °C: Insights from flexible Au-reaction cell batch experimental investigations
- Timescales and rates of intrusive and metamorphic processes determined from zircon and garnet in migmatitic granulite, Fiordland, New Zealand
- In situ chemical and isotopic analyses and element mapping of multiple-generation pyrite: Evidence of episodic gold mobilization and deposition for the Qiucun epithermal gold deposit in Southeast China
- Hydrothermal mineralization of celadonite: Hybridized fluid–basalt interaction in Janggi, Korea
- Gungerite, TlAs5Sb4S13, a new thallium sulfosalt with a complex structure containing covalent As-As bonds
- Nitscheite, (NH4)2[(UO2)2(SO4)3(H2O)2]·3H2O, a new mineral with an unusual uranyl-sulfate sheet
- Protocaseyite, a new decavanadate mineral containing a [Al4(OH)6(H2O)12]6+ linear tetramer, a novel isopolycation
- Fission-track etching in apatite: A model and some implications
- Hydrothermal monazite trumps rutile: Applying U-Pb geochronology to evaluate complex mineralization ages of the Katbasu Au-Cu deposit, Western Tianshan, Northwest China
- Erratum