Startseite Interfacial structures and acidity constants of goethite from first-principles Molecular Dynamics simulations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Interfacial structures and acidity constants of goethite from first-principles Molecular Dynamics simulations

  • Yingchun Zhang , Xiandong Liu ORCID logo , Jun Cheng und Xiancai Lu
Veröffentlicht/Copyright: 29. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we report a first-principles Molecular Dynamics (FPMD) study of interfacial structures and acidity constants of goethite. The pKa values of the groups on (010), (110), and (021) surfaces (space group Pbnm) are derived with the FPMD based vertical energy gap technique. The results indicate that major reactive groups include ≡Fe2OH2 and ≡FeOH2 on (010), ≡FeOH2, ≡Fe3OLH, and ≡Fe3OUH on (110), and ≡FeOhH2 and ≡Fe2OH on (021). The interfacial structures were characterized in detail with a focus on the hydrogen bonding environment. With the calculated pKa values, the point of zero charges (PZCs) of the three surfaces are derived and the overall PZC range of goethite is found to be consistent with the experiment. We further discuss the potential applications of these results in future studies toward understanding the environmental processes of goethite.

Acknowledgments and funding

This study was supported by the National Natural Science Foundation of China (Nos. 41872041, 41572027, and 42125202). We acknowledge the financial support from the State Key Laboratory for Mineral Deposits Research at Nanjing University. We are grateful to the High Performance Computing Center (HPCC) of Nanjing University for performing the numerical calculations in this paper on its blade cluster system.

References cited

Alexandrov, V., and Rosso, K.M. (2015) Ab initio modeling of Fe(II) adsorption and interfacial electron transfer at goethite (α-FeOOH) surfaces. Physical Chemistry Chemical Physics, 17, 14518–14531.10.1039/C5CP00921ASuche in Google Scholar

Alvarez, M., Sileo, E.E., and Rueda, E.H. (2008) Structure and reactivity of synthetic co-substituted goethites. American Mineralogist, 93, 584–590.10.2138/am.2008.2608Suche in Google Scholar

Aquino, A.J.A., Tunega, D., Haberhauer, G., Gerzabek, M.H., and Lischka, H. (2007) Quantum chemical adsorption studies on the (110) surface of the mineral goethite. The Journal of Physical Chemistry C, 111, 877–885.10.1021/jp0649192Suche in Google Scholar

Aquino, A.J.A., Tunega, D., Haberhauer, G., Gerzabek, M.H., and Lischka, H. (2008) Acid-base properties of a goethite surface model: A theoretical view. Geochimica et Cosmochimica Acta, 72, 3587–3602.10.1016/j.gca.2008.04.037Suche in Google Scholar

Boily, J.-F. (2012) Water structure and hydrogen bonding at goethite/water interfaces: Implications for proton affinities. The Journal of Physical Chemistry C, 116, 4714–4724.10.1021/jp2110456Suche in Google Scholar

Boily, J.-F., Lützenkirchen, J., Balmès, O., Beattie, J., and Sjöberg, S. (2001) Modeling proton binding at the goethite (α-FeOOH)-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 179, 11–27.10.1016/S0927-7757(00)00712-3Suche in Google Scholar

Boily, J.-F., Sjöberg, S., and Persson, P. (2005) Structures and stabilities of Cd(II) and Cd(II)-phthalate complexes at the goethite/water interface. Geochimica et Cosmochimica Acta, 69, 3219–3235.10.1016/j.gca.2004.12.013Suche in Google Scholar

Boulet, P., Greenwell, H.C., Stackhouse, S., and Coveney, P.V. (2006) Recent advances in understanding the structure and reactivity of clays using electronic structure calculations. Journal of Molecular Structure: THEOCHEM, 762, 33–48.10.1016/j.theochem.2005.10.028Suche in Google Scholar

Bylaska, E.J., Song, D., and Rosso, K.M. (2020) Electron transfer calculations between edge sharing octahedra in hematite, goethite, and annite. Geochimica et Cosmochimica Acta, 291, 79–91.10.1016/j.gca.2020.04.036Suche in Google Scholar

Chen, Y., Bylaska, E.J., and Weare, J.H. (2017) Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: Ab initio dynamical simulations. Geochemical Transactions, 18, 3.10.1186/s12932-017-0040-5Suche in Google Scholar PubMed PubMed Central

Cheng, J., and Sprik, M. (2010) Acidity of the aqueous rutile TiO2(110) surface from density functional theory based Molecular Dynamics. Journal of Chemical Theory and Computation, 6, 880–889.10.1021/ct100013qSuche in Google Scholar

Cheng, J., and Sprik, M. (2012) Alignment of electronic energy levels at electrochemical interfaces. Physical Chemistry Chemical Physics, 14, 11245–11267.10.1039/c2cp41652bSuche in Google Scholar

Cheng, J., Sulpizi, M., and Sprik, M. (2009) Redox potentials and pK(a) for benzoquinone from density functional theory based Molecular Dynamics. Journal of Chemical Physics, 131, 154504.10.1063/1.3250438Suche in Google Scholar

Cheng, J., Liu, X., VandeVondele, J., Sulpizi, M., and Sprik, M. (2014) Redox potentials and acidity constants from density functional theory based Molecular Dynamics. Accounts of Chemical Research, 47, 3522–3529.10.1021/ar500268ySuche in Google Scholar

Churakov, S.V. (2015) Ab initio simulations of mineral surfaces: Recent advances in numerical methods and selected applications. In T. Armbruster and R.M. Danisi, Eds., Highlights in Mineralogical Crystallography, p. 75–108. De Gruyter.10.1515/9783110417104-005Suche in Google Scholar

Churakov, S.V., and Liu, X. (2018) Quantum-chemical modelling of clay mineral surfaces and clay mineral–surface–adsorbate interactions. In R. Schoonheydt, C.T. Johnston, and F. Bergaya, Eds., Developments in Clay Science, p. 49–87. Elsevier.10.1016/B978-0-08-102432-4.00003-2Suche in Google Scholar

Cornell, R.M., and Schwertmann, U. (2003) The Iron Oxides: Structure, properties, reactions, occurrences and uses. John Wiley and Sons.10.1002/3527602097Suche in Google Scholar

Costanzo, F., Sulpizi, M., Valle, R.G.D., and Sprik, M. (2011) The oxidation of tyrosine and tryptophan studied by a Molecular Dynamics normal hydrogen electrode. The Journal of Chemical Physics, 134, 244508.10.1063/1.3597603Suche in Google Scholar

Elzinga, E.J., Peak, D., and Sparks, D.L. (2001) Spectroscopic studies of Pb(II)-sulfate interactions at the goethite-water interface. Geochimica et Cosmochi-mica Acta, 65, 2219–2230.10.1016/S0016-7037(01)00595-6Suche in Google Scholar

Fendorf, S., Eick, M.J., Grossl, P., and Sparks, D.L. (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environmental Science and Technology, 31, 315–320.10.1021/es950653tSuche in Google Scholar

Filius, J.D., Lumsdon, D.G., Meeussen, J.C.L., Hiemstra, T., and Van Riemsdijk, W.H. (2000) Adsorption of fulvic acid on goethite. Geochimica et Cosmochi-mica Acta, 64, 51–60.10.1016/S0016-7037(99)00176-3Suche in Google Scholar

Gaboriaud, F., and Ehrhardt, J.-J. (2003) Effects of different crystal faces on the surface charge of colloidal goethite (α-FeOOH) particles: An experimental and modeling study. Geochimica et Cosmochimica Acta, 67, 967–983.10.1016/S0016-7037(02)00988-2Suche in Google Scholar

Gaigeot, M.-P., and Sulpizi, M. (2016) Mineral–water interaction. In J.D. Kubicki, Ed., Molecular Modeling of Geochemical Reactions, pp. 271–309. Wiley, Hoboken.10.1002/9781118845226.ch8Suche in Google Scholar

Gaigeot, M.-P., and Sulpizi, M. (2020) Structure and dynamics of solid/liquid interfaces. In K. Wandelt, Ed., Surface and Interface Science, p. 143–196. Wiley.10.1002/9783527680597.ch50Suche in Google Scholar

Gaigeot, M.P., Sprik, M., and Sulpizi, M. (2012) Oxide/water interfaces: How the surface chemistry modifies interfacial water properties. Journal of Physics: Condensed Matter, 24, 124106–124116.10.1088/0953-8984/24/12/124106Suche in Google Scholar PubMed

Ghose, S.K., Waychunas, G.A., Trainor, T.P., and Eng, P.J. (2010) Hydrated goethite (α-FeOOH) (100) interface structure: Ordered water and surface functional groups. Geochimica et Cosmochimica Acta, 74, 1943–1953.10.1016/j.gca.2009.12.015Suche in Google Scholar

Gittus, O.R., von Rudorff, G.F., Rosso, K.M., and Blumberger, J. (2018) Acidity constants of the hematite–liquid water interface from ab initio Molecular Dynamics. The Journal of Physical Chemistry Letters, 9, 5574–5582.10.1021/acs.jpclett.8b01870Suche in Google Scholar PubMed

Gleason, A.E., Jeanloz, R., and Kunz, M. (2008) Pressure-temperature stability studies of FeOOH using X‑ray diffraction. American Mineralogist, 93, 1882–1885.10.2138/am.2008.2942Suche in Google Scholar

Goedecker, S., Teter, M., and Hutter, J. (1995) Separable dual-space gaussian pseudopotentials. Physical Review B, 54, 1703–1710.10.1103/PhysRevB.54.1703Suche in Google Scholar PubMed

Granados-Correa, F., Corral-Capulin, N.G., Olguín, M.T., and Acosta-León, C.E. (2011) Comparison of the Cd(II) adsorption processes between boehmite (γ-AlOOH) and goethite (α-FeOOH). Chemical Engineering Journal, 171, 1027–1034.10.1016/j.cej.2011.04.055Suche in Google Scholar

Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 132, 154104.10.1063/1.3382344Suche in Google Scholar

Grossl, P.R., Eick, M., Sparks, D.L., Goldberg, S., and Ainsworth, C.C. (1997) Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environmental Science and Technology, 31, 321–326.10.1021/es950654lSuche in Google Scholar

Gu, B., Schmitt, J., Chen, Z., Liang, L., and McCarthy, J.F. (1994) Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environmental Science and Technology, 28, 38–46.10.1021/es00050a007Suche in Google Scholar

Han, J., and Katz, L.E. (2019) Capturing the variable reactivity of goethites in surface complexation modeling by correlating model parameters with specific surface area. Geochimica et Cosmochimica Acta, 244, 248–263.10.1016/j.gca.2018.09.008Suche in Google Scholar

Hanna, K., Martin, S., Quilès, F., and Boily, J.F. (2014) Sorption of phthalic acid at goethite surfaces under flow-through conditions. Langmuir, 30, 6800–6807.10.1021/la4049715Suche in Google Scholar

Hiemstra, T., Riemsdijk, W.H.V., and Bolt, G.H. (1989) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach. I. Model description and evaluation of intrinsic constants. Journal of Colloid and Interface Science, 133, 91–104.10.1016/0021-9797(89)90284-1Suche in Google Scholar

Hiemstra, T., Venema, P., and Riemsdijk, W.H.V. (1996) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: The bond valence principle. Journal of Colloid and Interface Science, 184, 680–692.10.1006/jcis.1996.0666Suche in Google Scholar PubMed

Hutter, J., Iannuzzi, M., Schiffmann, F., and VandeVondele, J. (2014) CP2K: Atomistic simulations of condensed matter systems. Wiley Interdisciplinary Reviews: Computational Molecular Science, 4, 15–25.10.1002/wcms.1159Suche in Google Scholar

Kaiser, K., and Guggenberger, G. (2007) Sorptive stabilization of organic matter by microporous goethite: Sorption into small pores vs. Surface complexation. European Journal of Soil Science, 58, 45–59.10.1111/j.1365-2389.2006.00799.xSuche in Google Scholar

Kaiser, K., Guggenberger, G., Haumaier, L., and Zech, W. (1997) Dissolved organic matter sorption on sub soils and minerals studied by 13C-NMR and DRIFT spectroscopy. European Journal of Soil Science, 48, 301–310.10.1111/j.1365-2389.1997.tb00550.xSuche in Google Scholar

Kaiser, K., Mikutta, R., and Guggenberger, G. (2007) Increased stability of organic matter sorbed to ferrihydrite and goethite on aging. Soil Science Society of America Journal, 71, 711–719.10.2136/sssaj2006.0189Suche in Google Scholar

Kerisit, S., Bylaska, E.J., Massey, M.S., McBriarty, M.E., and Ilton, E.S. (2016) Ab initio Molecular Dynamics of uranium incorporated in goethite (α-FeOOH): Interpretation of X‑ray absorption spectroscopy of trace polyvalent metals. Inorganic Chemistry, 55, 11736–11746.10.1021/acs.inorgchem.6b01773Suche in Google Scholar PubMed

Kim, J., Li, W., Philips, B.L., and Grey, C.P. (2011) Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): A 31P NMR study. Energy and Environmental Science, 4, 4298–4305.10.1039/c1ee02093eSuche in Google Scholar

Klingelhoefer, G., DeGrave, E., Morris, R.V., Van Alboom, A., De Resende, V., De Souza, P., Rodionov, D., Schröder, C., Ming, D., and Yen, A. (2005) Mössbauer spectroscopy on mars: Goethite in the Columbia Hills at Gusev crater. Hyperfine Interactions, 166, 549–554.10.1007/978-3-540-49850-6_86Suche in Google Scholar

Klyukin, K., Rosso, K.M., and Alexandrov, V. (2018) Iron dissolution from goethite (α-FeOOH) surfaces in water by ab initio enhanced free-energy simulations. The Journal of Physical Chemistry C, 122, 16,086–16,091.10.1021/acs.jpcc.8b03743Suche in Google Scholar

Komárek, M., Antelo, J., Králová, M., Veselská, V., Číhalová, S., Chrastný, V., Ettler, V., Filip, J., Yu, Q., Fein, J.B., and Koretsky, C.M. (2018) Revisiting models of Cd, Cu, Pb and Zn adsorption onto Fe(III) oxides. Chemical Geology, 493, 189–198.10.1016/j.chemgeo.2018.05.036Suche in Google Scholar

Kosmulski, M. (2009) Surface charging and points of zero charge. Surfactant Science Series, vol. 145. CRC press.10.1201/9781420051896Suche in Google Scholar

Kubicki, J.D., Paul, K.W., and Sparks, D.L. (2008) Periodic density functional theory calculations of bulk and the (010) surface of goethite. Geochemical Transactions, 9, 4.10.1186/1467-4866-9-4Suche in Google Scholar PubMed PubMed Central

Kubicki, J.D., Paul, K.W., Kabalan, L., Zhu, Q., Mrozik, M.K., Aryanpour, M., Pierre-Louis, A.-M., and Strongin, D.R. (2012) ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite. Langmuir, 28, 14,573–14,587.10.1021/la303111aSuche in Google Scholar PubMed

Kubicki, J.D., Tunega, D., and Kraemer, S. (2017) A density functional theory investigation of oxalate and Fe(II) adsorption onto the (010) goethite surface with implications for ligand- and reduction-promoted dissolution. Chemical Geology, 464, 14–22.10.1016/j.chemgeo.2016.08.010Suche in Google Scholar

Leung, K., and Criscenti, L.J. (2012) Predicting the acidity constant of a goethite hydroxyl group from first principles. Journal of Physics: Condensed Matter, 24, 124105.10.1088/0953-8984/24/12/124105Suche in Google Scholar PubMed

Leung, K., and Criscenti, L.J. (2017) Lead and selenite adsorption at water-goethite interfaces from first principles. Journal of Physics: Condensed Matter, 29, 365101.10.1088/1361-648X/aa7e4fSuche in Google Scholar PubMed

Lippert, B.G., Hutter, J., and Parrinello, M. (1997) A hybrid gaussian and plane wave density functional scheme. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 92, 477–487.10.1080/00268979709482119Suche in Google Scholar

Liu, X., Cheng, J., Sprik, M., Lu, X., and Wang, R. (2013a) Understanding surface acidity of gibbsite with first principles Molecular Dynamics simulations. Geochimica et Cosmochimica Acta, 120, 487–495.10.1016/j.gca.2013.06.043Suche in Google Scholar

Liu, X., Lu, X., Sprik, M., Cheng, J., Meijer, E.J., and Wang, R. (2013b) Acidity of edge surface sites of montmorillonite and kaolinite. Geochimica et Cosmochimica Acta, 117, 180–190.10.1016/j.gca.2013.04.008Suche in Google Scholar

Liu, X., Lu, X., Meijer, E.J., Wang, R., and Zhou, H. (2012a) Atomic-scale structures of interfaces between phyllosilicate edges and water. Geochimica et Cosmochimica Acta, 81, 56–68.10.1016/j.gca.2011.12.009Suche in Google Scholar

Liu, X., Lu, X., Wang, R., Meijer, E.J., Zhou, H., and He, H. (2012b) Atomic scale structures of interfaces between kaolinite edges and water. Geochimica et Cosmochimica Acta, 92, 233–242.10.1016/j.gca.2012.06.008Suche in Google Scholar

Liu, X., Cheng, J., Lu, X., and Wang, R. (2014a) Surface acidity of quartz: Understanding the crystallographic control. Physical Chemistry Chemical Physics, 16, 26,909–26,916.10.1039/C4CP02955KSuche in Google Scholar PubMed

Liu, X., Cheng, J., Sprik, M., Lu, X., and Wang, R. (2014b) Surface acidity of 2:1-type dioctahedral clay minerals from first principles Molecular Dynamics simulations. Geochimica et Cosmochimica Acta, 140, 410–417.10.1016/j.gca.2014.05.044Suche in Google Scholar

Liu, X., Lu, X., Zhang, Y., Zhang, C., and Wang, R. (2017) Complexation of carboxylate on smectites surfaces. Physical Chemistry Chemical Physics, 19, 18,400–18,406.10.1039/C7CP03019CSuche in Google Scholar PubMed

Liu, H., Lu, X., Li, M., Zhang, L., Pan, C., Zhang, R., Li, J., and Xiang, W. (2018) Structural incorporation of manganese into goethite and its enhancement of Pb(II) adsorption. Environmental Science and Technology, 52, 4719–4727.10.1021/acs.est.7b05612Suche in Google Scholar

Lützenkirchen, J. (2002) Surface complexation models of adsorption: A critical survey in the context of experimental data. In J. Tóth, Ed., Adsorption: Theory, Modeling, and Analysis, pp. 631–710. Marcel Dekker, Inc.Suche in Google Scholar

Lützenkirchen, J., Boily, J.F., Gunneriusson, L., Lövgren, L., and Sjöberg, S. (2008) Protonation of different goethite surfaces—Unified models for NaNO3 and NaCl media. Journal of Colloid and Interface Science, 317, 155–165.10.1016/j.jcis.2007.08.055Suche in Google Scholar

Lützenkirchen, J., Franks, G.V., Plaschke, M., Zimmermann, R., Heberling, F., Abdelmonem, A., Darbha, G.K., Schild, D., Filby, A., Eng, P., and others (2018) The surface chemistry of sapphire-c: A literature review and a study on various factors influencing its IEP. Advances in Colloid and Interface Science, 251, 1–25.10.1016/j.cis.2017.12.004Suche in Google Scholar

Majzlan, J., Grevel, K.-D., and Navrotsky, A. (2003) Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3. American Mineralogist, 88, 855–859.10.2138/am-2003-5-614Suche in Google Scholar

Mamindy-Pajany, Y., Hurel, C., Marmier, N., and Roméo, M. (2011) Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination, 281, 93–99.10.1016/j.desal.2011.07.046Suche in Google Scholar

Mangold, M., Rolland, L., Costanzo, F., Sprik, M., Sulpizi, M., and Blumberger, J. (2011) Absolute pKa values and solvation structure of amino acids from density functional based Molecular Dynamics simulation. Journal of Chemical Theory and Computation, 7, 1951–1961.10.1021/ct100715xSuche in Google Scholar

Manning, B.A., Fendorf, S.E., and Goldberg, S. (1998) Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environmental Science and Technology, 32, 2383–2388.10.1021/es9802201Suche in Google Scholar

Marsac, R., Martin, S., Boily, J.-F., and Hanna, K. (2016) Oxolinic acid binding at goethite and akaganéite surfaces: Experimental study and modeling. Environmental Science and Technology, 50, 660–668.10.1021/acs.est.5b04940Suche in Google Scholar

Martin, G.J., Cutting, R.S., Vaughan, D.J., and Warren, M.C. (2009) Bulk and key surface structures of hematite, magnetite, and goethite: A density functional theory study. American Mineralogist, 94, 1341–1350.10.2138/am.2009.3029Suche in Google Scholar

McCarty, D.K., Moore, J.N., and Marcus, W.A. (1998) Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extractions. Applied Geochemistry, 13, 165–176.10.1016/S0883-2927(97)00067-XSuche in Google Scholar

Nie, Z., Finck, N., Heberling, F., Pruessmann, T., Liu, C., and Lützenkirchen, J. (2017) Adsorption of selenium and strontium on goethite: EXAFS study and surface complexation modeling of the ternary systems. Environmental Science and Technology, 51, 3751–3758.10.1021/acs.est.6b06104Suche in Google Scholar

Ona-Nguema, G., Morin, G., Juillot, F., Calas, G., and Brown, G.E. (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environmental Science and Technology, 39, 9147–9155.10.1021/es050889pSuche in Google Scholar

Ostergren, J.D., Trainor, T.P., Bargar, J.R., Brown, G.E., and Parks, G.A. (2000) Inorganic ligand effects on Pb(II) sorption to goethite (α-FeOOH): I. Carbonate. Journal of Colloid and Interface Science, 225, 466–482.10.1006/jcis.1999.6701Suche in Google Scholar

Park, J.M., Laio, A., Iannuzzi, M., and Parrinello, M. (2006) Dissociation mechanism of acetic acid in water. Journal of the American Chemical Society, 128, 11318–11319.10.1021/ja060454hSuche in Google Scholar

Perdew, J.P., Burke, K., and Ernzerhof, M. (1997) Generalized gradient approximation made simple. Physical Review Letters, 78, 1396.10.1103/PhysRevLett.77.3865Suche in Google Scholar

Peretyazhko, T., Zachara, J.M., Boily, J.F., Xia, Y., Gassman, P.L., Arey, B.W., and Burgos, W.D. (2009) Mineralogical transformations controlling acid mine drainage chemistry. Chemical Geology, 262, 169–178.10.1016/j.chemgeo.2009.01.017Suche in Google Scholar

Persson, P., and Axe, K. (2005) Adsorption of oxalate and malonate at the water-goethite interface: Molecular surface speciation from IR spectroscopy. Geochimica et Cosmochimica Acta, 69, 541–552.10.1016/j.gca.2004.07.009Suche in Google Scholar

Pouvreau, M., Greathouse, J.A., Cygan, R.T., and Kalinichev, A.G. (2017) Structure of hydrated gibbsite and brucite edge surfaces: DFT results and further development of the ClayFF classical force field with metal-O-H angle bending terms. Journal of Physical Chemistry C, 121, 14757–14771.10.1021/acs.jpcc.7b05362Suche in Google Scholar

Randall, S.R., Sherman, D.M., Ragnarsdottir, K.V., and Collins, C.R. (1999) The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 63, 2971–2987.10.1016/S0016-7037(99)00263-XSuche in Google Scholar

Rustad, J.R., and Boily, J.-F. (2010) Density functional calculation of the infrared spectrum of surface hydroxyl groups on goethite (α-FeOOH). American Mineralogist, 95, 414–417.10.2138/am.2010.3302Suche in Google Scholar

Schwertmann, U., and Cornell, R.M. (2000) Iron Oxides in the Laboratory: Preparation and characterization. Wiley.10.1002/9783527613229Suche in Google Scholar

Schwertmann, U., and Taylor, R.M. (1989) Iron oxides. Minerals in Soil Environments, 1, 379–438.10.2136/sssabookser1.2ed.c8Suche in Google Scholar

Spadini, L., Manceau, A., Schindler, P.W., and Charlet, L. (1994) Structure and stability of Cd2+ surface complexes on ferric oxides: 1. Results from EXAFS spectroscopy. Journal of Colloid and Interface Science, 168, 73–86.10.1006/jcis.1994.1395Suche in Google Scholar

Sparks, D.L. (2003) Environmental Soil Chemistry. Academic Press.10.1016/B978-012656446-4/50001-3Suche in Google Scholar

Sulpizi, M., and Sprik, M. (2008) Acidity constants from vertical energy gaps: Density functional theory based Molecular Dynamics implementation. Physical Chemistry Chemical Physics, 10, 5238–5249.10.1039/b802376jSuche in Google Scholar PubMed

Sulpizi, M., and Sprik, M. (2010) Acidity constants from DFT-based Molecular Dynamics simulations. Journal of Physics: Condensed Matter, 22, 284116.10.1088/0953-8984/22/28/284116Suche in Google Scholar PubMed

Sulpizi, M., Gaigeot, M.-P., and Sprik, M. (2012) The silica–water interface: How the silanols determine the surface acidity and modulate the water properties. Journal of Chemical Theory and Computation, 8, 1037–1047.10.1021/ct2007154Suche in Google Scholar PubMed

Tournassat, C., Davis, J.A., Chiaberge, C., Grangeon, S., and Bourg, I.C. (2016) Modeling the acid–base properties of montmorillonite edge surfaces. Environmental Science and Technology, 50, 13436–13445.10.1021/acs.est.6b04677Suche in Google Scholar PubMed

Tournassat, C., Tinnacher, R.M., Grangeon, S., and Davis, J.A. (2018) Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential. Geochimica et Cosmochimica Acta, 220, 291–308.10.1016/j.gca.2017.09.049Suche in Google Scholar

van der Zee, C., Roberts, D.R., Rancourt, D.G., and Slomp, C.P. (2003) Nano-goethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. Geology, 31, 993–996.10.1130/G19924.1Suche in Google Scholar

VandeVondele, J., and Hutter, J. (2007) Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. The Journal of Chemical Physics, 127, 114105.10.1063/1.2770708Suche in Google Scholar PubMed

VandeVondele, J., Mohamed, F., Krack, M., Hutter, J., Sprik, M., and Parrinello, M. (2004) The influence of temperature and density functional models in ab initio Molecular Dynamics simulation of liquid water. The Journal of Chemical Physics, 122, 014515.10.1063/1.1828433Suche in Google Scholar PubMed

VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J. (2005) Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Computer Physics Communications, 167, 103–128.10.1016/j.cpc.2004.12.014Suche in Google Scholar

Venema, P., Hiemstra, T., and van Riemsdijk, W.H. (1997) Interaction of cadmium with phosphate on goethite. Journal of Colloid and Interface Science, 192, 94–103.10.1006/jcis.1997.4988Suche in Google Scholar PubMed

Venema, P., Hiemstra, T., Weidler, P.G., and van Riemsdijk, W.H. (1998) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: Application to iron (hydr)oxides. Journal of Colloid and Interface Science, 198, 282–295.10.1006/jcis.1997.5245Suche in Google Scholar

von Rudorff, G.F., Jakobsen, R., Rosso, K.M., and Blumberger, J. (2016) Hematite(001)-liquid water interface from hybrid density functional-based Molecular Dynamics. Journal of Physics: Condensed Matter, 28, 394001.10.1088/0953-8984/28/39/394001Suche in Google Scholar PubMed

Watts, H.D., Tribe, L., and Kubicki, J.D. (2014) Arsenic adsorption onto minerals: Connecting experimental observations with density functional theory calculations. Minerals, 4, 208–240.10.3390/min4020208Suche in Google Scholar

Yan, W., and Jing, C. (2018) Molecular insights into glyphosate adsorption to goethite gained from ATR-FTIR, two-dimensional correlation spectroscopy, and DFT study. Environmental Science and Technology, 52, 1946–1953.10.1021/acs.est.7b05643Suche in Google Scholar PubMed

Yang, Y., Wang, S., Xu, Y., Zheng, B., and Liu, J. (2016) Molecular-scale study of aspartate adsorption on goethite and competition with phosphate. Environmental Science and Technology, 50, 2938–2945.10.1021/acs.est.5b05450Suche in Google Scholar PubMed

Zhang, C., Liu, X., Lu, X., Meijer, E.J., Wang, K., He, M., and Wang, R. (2016) Cadmium(II) complexes adsorbed on clay edge surfaces: Insight from first principles Molecular Dynamics simulation. Clays and Clay Minerals, 64, 337–347.10.1346/CCMN.2016.0640402Suche in Google Scholar

Zhang, C., Liu, X., Lu, X., He, M., Jan Meijer, E., and Wang, R. (2017) Surface complexation of heavy metal cations on clay edges: Insights from first principles Molecular Dynamics simulation of Ni(II). Geochimica et Cosmochimica Acta, 203, 54–68.10.1016/j.gca.2017.01.014Suche in Google Scholar

Zhang, C., Liu, X., Tinnacher, R.M., and Tournassat, C. (2018) Mechanistic understanding of uranyl ion complexation on montmorillonite edges: A combined first principles Molecular Dynamics–surface complexation modeling approach. Environmental Science and Technology, 52, 8501–8509.10.1021/acs.est.8b02504Suche in Google Scholar PubMed

Zhang, Y., Liu, X., Zhang, C., and Lu, X. (2020) A combined first principles and classical Molecular Dynamics study of clay-soil organic matters (SOMS) interactions. Geochimica et Cosmochimica Acta, 291, 110–125.10.1016/j.gca.2019.12.022Suche in Google Scholar

Received: 2020-09-28
Accepted: 2020-12-05
Published Online: 2021-10-29
Published in Print: 2021-11-25

© 2021 Mineralogical Society of America

Artikel in diesem Heft

  1. Highlights and Breakthroughs
  2. First-principles Molecular Dynamics maps out complete mineral surface acidity landscape
  3. Sulfur solubility in the Earth magma ocean—Testing the hypothesis of the “Hadean matte”
  4. Spectroscopic evidence for the Fe3+ spin transition in iron-bearing δ-AlOOH at high pressure
  5. Quantitative WDS compositional mapping using the electron microprobe
  6. Interfacial structures and acidity constants of goethite from first-principles Molecular Dynamics simulations
  7. Sound velocities of iron-nickel (Fe90Ni10) alloy up to 8 GPa and 773 K: The effect of nickel on the elastic properties of bcc-iron at high P-T
  8. Formation of metallic-Cu-bearing mineral assemblages in type-3 ordinary and CO chondrites
  9. Behavior and origin of hydrogen defects in natural orthopyroxene during high-temperature processes
  10. Phase transitions in CaCO3 under hydrous and anhydrous conditions: Implications for the structural transformations of CaCO3 during subduction processes
  11. Strain-induced partial serpentinization of germanate olivine with a small amount of water
  12. The origin of trapiche-like inclusion patterns in quartz from Inner Mongolia, China
  13. Upper temperature limits of orogenic gold deposit formation: Constraints from TiO2 polymorphs in the Dongyuan Au deposit, Jiangnan Orogen, China
  14. Formation of clinohumite ± spinel in dolomitic marbles from the Makrohar Granulite Belt, Central India: Evidence for Ti mobility during regional metamorphism
  15. Carletonmooreite, Ni3Si, a new silicide from the Norton County aubrite meteorite
  16. Sulfur content at sulfide saturation of peridotitic melt at upper mantle conditions
  17. Johnkoivulaite, Cs(Be2B)Mg2Si6O18, a new mineral of the beryl group from the gem deposits of Mogok, Myanmar
  18. Age determination of oriented rutile inclusions in sapphire and of moonstone from the Mogok metamorphic belt, Myanmar
  19. X-ray computed microtomography of diamondiferous impact suevitic breccia and clast-poor melt rock from the Kara astrobleme (Pay-Khoy, Russia)
  20. Book Review
  21. Book Review: Clays in the Minerals Processing Value Chain
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2021-7835/html
Button zum nach oben scrollen