Startseite The origin of trapiche-like inclusion patterns in quartz from Inner Mongolia, China
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The origin of trapiche-like inclusion patterns in quartz from Inner Mongolia, China

  • Gabriela A. Farfan ORCID logo , John Rakovan , Michael R. Ackerson , Benjamin J. Andrews ORCID logo und Jeffrey E. Post
Veröffentlicht/Copyright: 29. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Fibrous amphibole and clay mineral inclusions that form striking trapiche-like star patterns within quartz crystals from Inner Mongolia, China, present a challenge to uncover how these crystals grow and incorporate inclusions in a geological context. We propose that the patterns formed as a result of protogenic clay (ferrosaponite or nontronite) inclusions that were preferentially trapped on rough surfaces during quartz crystal growth. The rough surface texture of these crystals is the result of multiple growth centers during 2D nucleation and spread and split crystal formation. Observations via optical microscopy, cathodoluminescence, and three-dimensional micro-CT scanning highlight how the exterior surface textures on the termination of a complete quartz crystal mimic its interior inclusion patterns. Cathodoluminescence images, as well as varying aluminum concentrations along a core-to-exterior transect in a quartz crystal slice, suggest that the formation fluid underwent a heterogeneous chemical history. Measurements of Ti and observations of fluid inclusions suggest the quartz formed at a temperature of under 348 °C. This study presents the details surrounding split crystal growth in quartz in a natural geological setting, which has implications for inspiring new materials and may serve as an indicator for turbid and highly supersaturated formation fluid conditions in geological formations.

Acknowledgments and Funding

The authors thank Bert Ottens for his insights on the Huanggang Mine in Inner Mongolia, China, the Smithsonian Institution Department of Mineral Sciences for the quartz samples, Greg Polley for photographing the quartz slices, Rob Wardell for slicing the samples, and for help with the luminoscope (CL) technique, and J.J. Hill for aiding with the micro-X‑ray CT scanning. We are grateful to Amir Akhavan and Associate Editor Maarten Broekmans for their detailed reviews and suggestions to improve this manuscript. Funding for G.F. and for this project was made possible by a Smithsonian Peter Buck Postdoctoral Fellowship and the Coralyn W. Whitney Curator Endowment.

References cited

Akhavan, A. (2013) The Quartz Page (Online). Available: http://www.quartzpage.de/index.html (accessed October 19, 2020).Suche in Google Scholar

Andersen, T.B. (1984) Inclusion patterns in zoned garnets from Magerøy, north Norway. Mineralogical Magazine, 48, 21–26.10.1180/minmag.1984.048.346.03Suche in Google Scholar

Andreassen, J.P., and Emslie Lewis, A. (2017) Classical and nonclassical theories of crystal growth. In A.E.S. Van Driessche, M. Kellermeier, L.G. Benning, and D. Gebauer, Eds., New Perspectives on Mineral Nucleation and Growth from Solution Precursors to Solid Materials, p. 137−154. Springer.10.1007/978-3-319-45669-0_7Suche in Google Scholar

Arumugam, D., Thangapandian, M., Joshua Mathavan, J.L., Jayaram, A., Palanichamy, M., Selva Chandrasekaran, S., Subramanian, U., Gupta, M., Okram, G.S., Jothirajan, M.A., and Amirtham, M.F.B., and others. (2017) Growth mechanism of pine-leaf-like nanostructure from the backbone of SrCO3 nanorods using LaMer’s surface diffusion: Impact of higher surface energy (γ = 38.9 eV/nm2) {111} plane stacking along (110) (γ = 3.4 eV/nm2) by first-principles calculations. Crystal Growth and Design, 17, 6394–6406.10.1021/acs.cgd.7b01066Suche in Google Scholar

Atherton, M.P., and Brenchley, P.J. (2007) A preliminary study of the structure, stratigraphy and metamorphism of some contact rocks of the Western Andes, near the Quebrada Venado Muerto, Peru. Geological Journal, 8, 161–178.10.1002/gj.3350080114Suche in Google Scholar

Berg, W.F. Crystal growth from solution. Proceedings of the Royal Society of London, Series A, 164, 79–95.10.1098/rspa.1938.0006Suche in Google Scholar

Bohannon, S. (2019) Emerald: The superstar of trapiche gemstones (Online). Available: https://www.gia.edu/gia-news-research/emerald-superstar-trapiche-gemstones (accessed July 29, 2020). Gemological Institute of America.Suche in Google Scholar

Buerger, M.J. (1932) The significance of “block structure” in crystals. American Mineralogist, 17, 177–191.Suche in Google Scholar

Cha, S.I., Hwang, K.H., Kim, Y.H., Yun, M.J., Seo, S.H., Shin, Y.J., Moon, J.H., and Lee, D.Y. (2013) Crystal splitting and enhanced photocatalytic behavior of TiO2 rutile nano-belts induced by dislocations. Nanoscale, 5, 753–758.10.1039/C2NR33028HSuche in Google Scholar

Chernov, A.A. (1984) Modern Crystallography III: Crystal Growth, 517 p. Springer.10.1007/978-3-642-81835-6Suche in Google Scholar

Chukanov, N.V., Pekov, I.V., Zadov, A.E., Chukanova, V.N., and Mökkel, S. (2003) Ferrosaponite Ca0.3(Fe2+,Mg,Fe3+)3(Si,Al)4O10(OH)2·4H2O, the new trioctahedral smectite. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 132, 68–74.Suche in Google Scholar

Cölfen, H., and Antonietti, M. (2005) Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie (International Ed. In English), 44, 5576–5591.10.1002/anie.200500496Suche in Google Scholar PubMed

Dennen, W.H., Blackburn, W.H., and Quesada, A. (1970) Aluminum in quartz as a geothermometer. Contributions to Mineralogy and Petrology, 27, 332–342.10.1007/BF00389817Suche in Google Scholar

Desarnaud, J., Derluyn, H., Carmeliet, J., Bonn, D., and Shahidzadeh, N. (2018) Hopper growth of salt crystals. The Journal of Physical Chemistry Letters, 9, 2961–2966.10.1021/acs.jpclett.8b01082Suche in Google Scholar PubMed PubMed Central

Dobson, D.C. (1982) Geology and alteration of the Lost River tin-tungsten-fluorine deposit. Economic Geology, 77, 1033–1052.10.2113/gsecongeo.77.4.1033Suche in Google Scholar

Eggleton, R. (1977) Nontronite: Chemistry and X-ray diffraction. Clay Minerals, 12, 181–194.10.1180/claymin.1977.012.3.01Suche in Google Scholar

Fersman, A.E. (1935) Achievements of Soviet Mineralogy and Geochemistry during recent years, 1929−1934, Moscow-Leningrad, Izdatel’stvo A.N. SSSR (in Russian).Suche in Google Scholar

Garnier, V., Ohnenstetter, D., Giuliani, G., Blanc, P., and Schwarz, D. (2002a) Trace-element contents and cathodoluminescence of “trapiche” rubies from Mong Hsu, Myanmar (Burma): Geological significance. Mineralogy and Petrology, 76, 179–193.10.1007/s007100200040Suche in Google Scholar

Garnier, V., Ohnenstetter, D., Giuliani, G., and Schwarz, D. (2002b) Rubis trapiches de Mong Hsu, Myanmar. Revue de Gemmologie A.F.G, 144, 5–12.Suche in Google Scholar

Gates-Rector, S.D., and Blanton, T.N. (2019) The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffraction, 34, 352–360.10.1017/S0885715619000812Suche in Google Scholar

Götze, J., Plötze, M., Fuchs, H., and Habermann, D. (1999) Defect structure and luminescence behaviour of agate–results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineralogical Magazine, 63, 149–163.10.1180/002646199548394Suche in Google Scholar

Götze, J., Plötze, M., and Habermann, D. (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—A review. Mineralogy and Petrology, 71, 225–250.10.1007/s007100170040Suche in Google Scholar

Götze, J., Pan, Y., Stevens-Kalceff, M., Kempe, U., and Müller, A. (2015) Origin and significance of the yellow cathodoluminescence (CL) of quartz. American Mineralogist, 100, 1469–1482.10.2138/am-2015-5072Suche in Google Scholar

Grigor’ev, D.P. (1961) Ontogeny of minerals: Lvov, Izdatel’stvo L’vovskogo Univ. (in Russian), 250 p. English translation 1965, Israel Program for Scientific Translations, Israel.Suche in Google Scholar

Grigor’ev, D.P., and Zhabin, A.G. (1975) Ontogeny of Minerals: Individuals, 200 p. Nauka, Moscow (in Russian).Suche in Google Scholar

Hainschwang, T., Notari, F., and Anckar, B. (2007) Trapiche tourmaline from Zambia. Gems and Gemology, 43, 36–46.10.5741/GEMS.43.1.36Suche in Google Scholar

Harker, A. (1950) Metamorphic Textures. Methuen.Suche in Google Scholar

Ihinger, P.D., and Zink, S.I. (2000) Determination of relative growth rates of natural quartz crystals. Nature, 404, 865–869.10.1038/35009091Suche in Google Scholar PubMed

Jamtveit, B., and Andersen, T. (1992) Morphological instabilities during rapid growth of metamorphic garnets. Physics and Chemistry of Minerals, 19, 176–184.10.1007/BF00202106Suche in Google Scholar

Jourdan, A.-L., Vennemann, T.W., Mullis, J., Ramseyer, K., and Speirs, C.J. (2009) Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. European Journal of Mineralogy, 21, 219–231.10.1127/0935-1221/2009/0021-1881Suche in Google Scholar

Krzemnicki, M.S., and Laurs, B.M. (2014) Gem notes: Quartz with radiating fibres, sold as Trapiche quartz. Journal of Gemmology, 34, 296–298.Suche in Google Scholar

Kvasnitsa, V.N., Yatsenko, V.G., and Jaszczak, J.A. (1999) Disclinations in unusual graphite crystals from anorthosites of Ukraine. Canadian Mineralogist, 37, 951–960.Suche in Google Scholar

Kwak, T.A.P., and Askins, P.W. (1981) Geology and genesis of the F-Sn-W (Be-Zn) skarn (wrigglite) at Moina. Economic Geology, 76, 439–467.10.2113/gsecongeo.76.2.439Suche in Google Scholar

Lauf, R.J. (2012) A Collector’s Guide to Quartz and Other Silica Minerals, 96 p. Schiffer, Atglen, Pennsylvania.Suche in Google Scholar

Laurs, B.M. (2016) Gem notes: Quartz slabs from Inner Mongolia. Journal of Gemmology, 35, 15.Suche in Google Scholar

Layne, G.D., and Spooner, E.T.C. (1991) The JC tin skarn deposit, southern Yukon Territory; I, Geology, paragenesis, and fluid inclusion microthermometry. Economic Geology, 86, 29–47.10.2113/gsecongeo.86.1.29Suche in Google Scholar

Layne, G.D., Longstaffe, F.J., and Spooner, E.T.C. (1991) The JC tin skarn deposit, southern Yukon Territory; II, A carbon, oxygen, hydrogen, and sulfur stable isotope study. Economic Geology, 86, 48–65.10.2113/gsecongeo.86.1.48Suche in Google Scholar

Liu, X.Y. (2001) New understanding for two-dimensional nucleation (II). Surface Review and Letters, 08, 423–428.10.1142/S0218625X01001178Suche in Google Scholar

Liu, X.Y., Maiwa, K., and Tsukamoto, K. (1997) Heterogeneous two-dimensional nucleation and growth kinetics. The Journal of Chemical Physics, 106, 1870–1879.10.1063/1.473325Suche in Google Scholar

Maleev, M.N. (1972) Diagnostic features of spherulites formed by splitting of a single crystal nucleus. Growth mechanism of chalcedony: Tschermaks Mineralogische und Petrographische Mitteilungen, 18, 1–16.Suche in Google Scholar

McBride, M.B. (1994) Environmental Chemistry of Soils, 416 p. Oxford University Press.Suche in Google Scholar

MDI (2019) JADE 9 (Computer software). Materials Data, Livermore, California, U.S.A.Suche in Google Scholar

Mei, W., Lü, X., Cao, X., Liu, Z., Zhao, Y., Ai, Z., Tang, R., and Abfaua, M.M. (2015) Ore genesis and hydrothermal evolution of the Huanggang skarn iron–tin polymetallic deposit, southern Great Xing’an Range: Evidence from fluid inclusions and isotope analyses. Ore Geology Reviews, 64, 239–252.10.1016/j.oregeorev.2014.07.015Suche in Google Scholar

Meinert, L.D. (1992) Skarns and skarn deposits. Geoscience Canada, 19, 145–162.Suche in Google Scholar

Merino, E., Harvey, C., and Murray, H.H. (1989) Aqueous-chemical control of the tetrahedral-aluminum content of quartz, halloysite, and other low-temperature silicates. Clays and Clay Minerals, 37, 135–142.10.1346/CCMN.1989.0370204Suche in Google Scholar

Müllenmeister, H.J., and Zang, J. (1995) Ein trapiche-rubin aus Myanmar (Burma). Lapis, 20, 50.Suche in Google Scholar

Nassau, K. (1968) On the cause of asterism in star corundum. American Mineralogist, 53, 300–305.Suche in Google Scholar

Nassau, K., and Jackson, K.A. (1970) Trapiche emeralds from Chivor and Muzo, Colombia. American Mineralogist, 55, 416–427.Suche in Google Scholar

Okada, T., Nagase, T., Imai, H., and Uehara, S. (2017) Sakura texture in quartz crystals from Obira mine, Oita prefecture, Japan. Japanese Magazine of Mineralogical and Petrological Sciences, 46, 117–123.10.2465/gkk.170618Suche in Google Scholar

Ottens, B., and Neumeier, G. (2012) The Huanggang Mine Inner Mongolia, China. The Mineralogical Record, 43, 529–563.Suche in Google Scholar

Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J., and Pankrath, R. (1992) Microdistribution of Al, Li, and Na in α quartz: Possible causes and correlation with short-lived cathodoluminescence. American Mineralogist, 77, 534–544.Suche in Google Scholar

Petreus, I. (1974) The divided structure of crystals II. Secondary structures and habits. Neues Jahrbuch für Mineralogie. Abhandlungen, 122/3, 314–338.Suche in Google Scholar

Petreus, I. (1978) The divided structure of crystals I. Lineage and sectoral structure in pyrite and beryl. American Mineralogist, 63, 725–731.Suche in Google Scholar

Pignatelli, I., Giuliani, G., Ohnenstetter, D., Agrosì, G., Mathieu, S., Morlot, C., and Branquet, Y. (2015) Colombian trapiche emeralds: Recent advances in understanding their formation. Gems and Gemology, 51, 222–259.10.5741/GEMS.51.3.222Suche in Google Scholar

Pilapong, C., Thongtem, T., and Thongtem, S. (2010) Hydrothermal synthesis of double sheaf-like Sb2S3 using copolymer as a crystal splitting agent. Journal of Alloys and Compounds, 507, L38–L42.10.1016/j.jallcom.2010.08.003Suche in Google Scholar

Potrafke, A., Stalder, R., Schmidt, B.C., and Ludwig, T. (2019) OH defect contents in quartz in a granitic system at 1–5 kbar. Contributions to Mineralogy and Petrology, 174, 11.10.1007/s00410-019-1632-0Suche in Google Scholar PubMed PubMed Central

Rakovan, J. (2009) Word to the Wise: Sectoral Zoning. Rocks and Minerals, 84, 171−176.10.3200/RMIN.84.2.171-176Suche in Google Scholar

Rakovan, J., Kitamura, M., and Tamada, O. (2006) Sakura ishi (cherry blossom stones): Mica pseudomorphs of complex cordierite-indialite intergrowths from Kameoka, Kyoto Prefecture, Japan. Rocks and Minerals, 81, 284−292.10.3200/RMIN.81.4.284-292Suche in Google Scholar

Rice, A.H.N. (1993) Textural and twin sector-zoning and displacement of graphite in chiastolite and -pyralspite and grandite garnets in the variscides of South-West England. Annual Conference of the Ussher Society, 129–131.Suche in Google Scholar

Rice, A.H.N., and Mitchell, J.I. (1991) Porphyroblast textural sector-zoning and matrix displacement. Mineralogical Magazine, 55, 379–396.10.1180/minmag.1991.055.380.08Suche in Google Scholar

Rykart, R. (1995) Quarz-Monographie—Die Eigenheiten von Bergkristall, Rauchquarz, Amethyst, Chalcedon, Achat, Opal und Anderen Varietäten, 2nd ed. Ott Verlag. Thun, Switzerland.Suche in Google Scholar

Schmetzer, K., Hänni, H.A., Bernhardt, H.J., and Schwarz, D. (1996) Trapiche rubies. Gems and Gemology, 32, 242–250.10.5741/GEMS.32.4.242Suche in Google Scholar

Schmetzer, K., Beili, Z., Yan, G., Bernhardt, H.J., and Hänni, H.A. (1999) Element mapping of trapiche rubies. Journal of Gemmology, 26, 289–301.10.15506/JoG.1999.26.5.289Suche in Google Scholar

Schmetzer, K., Bernhardt, H.J., and Hainschwang, T. (2011) Chemical and growth zoning in trapiche tourmaline from Zambia—A re-evaluation. Journal of Gemmology, 32, 151–173.10.15506/JoG.2011.32.5.151Suche in Google Scholar

Slade, P.G., Stone, P.A., and Radoslovich, E.W. (1985) Interlayer structures of the two-layer hydrates of Na-and Ca-vermiculites. Clays and Clay Minerals, 33, 51–61.10.1346/CCMN.1985.0330106Suche in Google Scholar

Stalder, H.A. (1976) Flüssigkeits- und gaseinschlüsse in quarzkristallen. Die Naturwissenschaften, 63, 449–456.10.1007/BF00624573Suche in Google Scholar

Sun, Z., Muyal, J., and Hand, D. (2018) Gem News International: Trapiche-like amethyst from Brazil. Gems and Gemology, 54, 237–238.Suche in Google Scholar

Sunagawa, I. (1999) Growth and morphology of crystals. Forma, 14, 147–166.Suche in Google Scholar

Sunagawa, I. (2005) Crystals: Growth, Morphology, and Perfection, 295 p. Cambridge University Press.10.1017/CBO9780511610349Suche in Google Scholar

Suzuki, K., Tokudome, Y., Tsuda, H., and Takahashi, M. (2016) Morphology control of BiFeO3 aggregates via hydrothermal synthesis. Journal of Applied Crystallography, 49, 168–174.10.1107/S1600576715023845Suche in Google Scholar

Tang, J., and Alivisatos, A.P. (2006) Crystal splitting in the growth of Bi2S3. Nano Letters, 6, 2701–2706.10.1021/nl0615930Suche in Google Scholar PubMed

Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K., and Lanzirotti, A. (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, 160, 743–759.10.1007/s00410-010-0505-3Suche in Google Scholar

Ul’yanova, T.P., Punin, Y.O., and Petrov, T.G. (1984) Trends in crystal splitting during growth. In A.A. Chernov, Ed., Growth of Crystals, 12, 135−140. (English translation, Consultants Bureau).10.1007/978-1-4615-7116-2_22Suche in Google Scholar

Vasconcelos, P., Wenk, H.R., and Rossman, G. (1994) The Anahí Ametrine Mine. Bolivia. Gems and Gemology, 30.Suche in Google Scholar

Vertriest, W., Sangsawong, S., and Pardieu, V. (2016) Trapiche-type sapphire from Tasmania. Gems and Gemology, 52, 429–431.Suche in Google Scholar

Wang, L.J., Shimazaki, H., and Shiga, Y. (2001) Skarns and genesis of the Huanggang Fe-Sn deposit, Inner Mongolia, China. Resource Geology, 51, 359–376.10.1111/j.1751-3928.2001.tb00108.xSuche in Google Scholar

Webster, R. (1995) Gems, Their Sources, Descriptions and Identification, 5th ed., 1072 p. Butterworths.Suche in Google Scholar

Wilbur, D.E., and Ague, J.J. (2006) Chemical disequilibrium during garnet growth: Monte Carlo simulations of natural crystal morphologies. Geology, 34, 689–692.10.1130/G22483.1Suche in Google Scholar

Zhabin, A.G. (1979) Ontogeny of Minerals: Aggregates, 300 p. Nauka, Moscow (in Russian).Suche in Google Scholar

Received: 2020-01-31
Accepted: 2020-11-11
Published Online: 2021-10-29
Published in Print: 2021-11-25

© 2021 Mineralogical Society of America

Artikel in diesem Heft

  1. Highlights and Breakthroughs
  2. First-principles Molecular Dynamics maps out complete mineral surface acidity landscape
  3. Sulfur solubility in the Earth magma ocean—Testing the hypothesis of the “Hadean matte”
  4. Spectroscopic evidence for the Fe3+ spin transition in iron-bearing δ-AlOOH at high pressure
  5. Quantitative WDS compositional mapping using the electron microprobe
  6. Interfacial structures and acidity constants of goethite from first-principles Molecular Dynamics simulations
  7. Sound velocities of iron-nickel (Fe90Ni10) alloy up to 8 GPa and 773 K: The effect of nickel on the elastic properties of bcc-iron at high P-T
  8. Formation of metallic-Cu-bearing mineral assemblages in type-3 ordinary and CO chondrites
  9. Behavior and origin of hydrogen defects in natural orthopyroxene during high-temperature processes
  10. Phase transitions in CaCO3 under hydrous and anhydrous conditions: Implications for the structural transformations of CaCO3 during subduction processes
  11. Strain-induced partial serpentinization of germanate olivine with a small amount of water
  12. The origin of trapiche-like inclusion patterns in quartz from Inner Mongolia, China
  13. Upper temperature limits of orogenic gold deposit formation: Constraints from TiO2 polymorphs in the Dongyuan Au deposit, Jiangnan Orogen, China
  14. Formation of clinohumite ± spinel in dolomitic marbles from the Makrohar Granulite Belt, Central India: Evidence for Ti mobility during regional metamorphism
  15. Carletonmooreite, Ni3Si, a new silicide from the Norton County aubrite meteorite
  16. Sulfur content at sulfide saturation of peridotitic melt at upper mantle conditions
  17. Johnkoivulaite, Cs(Be2B)Mg2Si6O18, a new mineral of the beryl group from the gem deposits of Mogok, Myanmar
  18. Age determination of oriented rutile inclusions in sapphire and of moonstone from the Mogok metamorphic belt, Myanmar
  19. X-ray computed microtomography of diamondiferous impact suevitic breccia and clast-poor melt rock from the Kara astrobleme (Pay-Khoy, Russia)
  20. Book Review
  21. Book Review: Clays in the Minerals Processing Value Chain
Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2021-7454/html
Button zum nach oben scrollen