Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, a new mineral and a possible sink for Sb during weathering of fahlore
-
Jakub Plášil
, Anthony R. Kampf
, Nicolas Meisser , Cédric Lheur , Thierry Brunsperger und Radek Škoda
Abstract
Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, is a new mineral species from the Giftgrube mine, Rauenthal, Sainte-Marie-Aux-Mines ore-district, Haut-Rhin department, France. It is a supergene mineral found in quartz-carbonate gangue with disseminated to massive tennantite-tetrahedrite series minerals, native arsenic, Ni-Co arsenides, and supergene minerals picropharmacolite, fluckite, and pharmacolite. Smamite occurs as lenticular crystals growing in aggregates up to 0.5 mm across. The new mineral is whitish to colorless, transparent with vitreous luster and white streak; non-fluorescent under UV radiation. The Mohs hardness is ~3½; the tenacity is brittle, the fracture is curved, and there is no apparent cleavage. The measured density is 2.72(3) g/cm3; the calculated density is 2.709 g/cm3 for the ideal formula. The mineral is insoluble in H2O and quickly soluble in dilute (10%) HCl at room temperature. Optically, smamite is biaxial (–), α = 1.556(1), β = 1.581(1), γ = 1.588(1) (white light). The 2V (meas) = 54(1)°; 2V (calc) = 55.1°. The dispersion is weak, r > v. Smamite is non-pleochroic. Electron microprobe analyses provided the empirical formula Ca2.03Sb0.97(OH)4[H1.10(As1.99Si0.01O4)2]·6H2O. Smamite is triclinic, P
Acknowledgments
William Perraud is acknowledged for providing us with the microphotography of smamite. Comments by Juraj Majzlan and an anonymous reviewer, as well as the techincial structures editor, helped in improving the manuscript.
Funding
This study was funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County and by the Czech Science Foundation (GACR 17-09161S) to J.P.
References cited
Bari, H., Permingeat, F., Pierrot, R., and Walenta, K. (1980a) La ferrarisite, Ca5H2(AsO44×9H2O, une nouvelle espèce minérale isomorphe de la guérinite. Bulletin de la Societé Française de Minéral et de Cristallographie, 103, 533–540.10.3406/bulmi.1980.7417Suche in Google Scholar
Bari, H., Cesbron, F., Permingeat, F., and Pillard, F. (1980b) La fluckite, arséniate hydraté de calcium et manganèse, CaMnH2(AsO42×2H2O, une nouvelle espèce minérale. Bulletin de la Societé Française de Minéral et de Cristallographie, 103, 122–128.10.3406/bulmi.1980.7384Suche in Google Scholar
Bari, H., Catti, M., Ferraris, G., Ivaldi, G., and Permingeat, F. (1982) Phaunouxite, Ca3(AsO42×11H2O, a new mineral strictly associated with rauenthalite. Bulletin de la Societé Française de Minéral et de Cristallographie, 105, 327–332.Suche in Google Scholar
Borčinová Radková, A., Jamieson, H., Lalinská-Voleková, B., Majzlan, J., Števko, M., and Chovan, M. (2017) Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and Ľubietova-Svatodušná, Slovakia. American Mineralogist, 102, 1091–1100.Suche in Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.Suche in Google Scholar
Đorđević, T., Kolitsch, U., Serafimovski, T., Tasev, G., Tepe, N., Stöger-Pollach, M., Hofmann, T., and Boev, B. (2019) Mineralogy and weathering of realgarrich tailings at a former As-Sb-Cr mine at Lojane, North Macedonia. Canadian Mineralogist, 57, 403–423.Suche in Google Scholar
Ferraris, G., Jones, D.W., and Yerkess, J. (1971) Symmetrical hydrogen bonds in the crystal structure of calcium bis(dihydrogen arsenate): a neutron-diffraction study. Journal of the Chemical Society D, 23, 1566–1567.10.1039/c29710001566Suche in Google Scholar
Ferraris, G., Jones, D.W., and Yerkess, J. (1972) A neutron diffraction study of the crystal structure of calcium bis(dihydrogen arsenate), Ca(H2AsO42 Acta Crystallographica, B28, 2430–2437.10.1107/S0567740872006247Suche in Google Scholar
Gagné, O.C., and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562–578.10.1107/S2052520615016297Suche in Google Scholar PubMed PubMed Central
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C., and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 23–39.Suche in Google Scholar
Herpin, P., and Pierrot, R. (1963) La weilite, CaH(AsO4 un nouvel arséniate de calcium isomorphe de la monétite. Bulletin de la Societé Française de Minéral et de Cristallographie, 86, 368–372.10.3406/bulmi.1963.5666Suche in Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Suche in Google Scholar
Keim, M.F., Staude, M., Marquardt, K., Bachmann, K., Opitz, J., and Markl, G. (2018) Weathering of Bi-tennantite. Chemical Geology, 499, 1–25.10.1016/j.chemgeo.2018.07.032Suche in Google Scholar
Kolitsch, U., Sejkora, J., Topa, D., Kampf, A.R., Plášil, J., Rieck, B., and Fabritz, K.H. (2018) Pracharite, IMA 2018-081. CNMNC Newsletter No. 46, December 2018, page 1183; European Journal of Mineralogy, 30, 1181–1189.Suche in Google Scholar
Libowitzky E. (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths inminerals. Monatshefte für Chemie, 130, 1047–1059.10.1007/BF03354882Suche in Google Scholar
Majzlan, J., Plášil, J., Škoda, R., Gescher, J., Kögler, P., Rusznyak, A., Küsel, K., Neu, T.R., Mangold, S., and Rothe, J. (2014) Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications. Environmental Science & Technology, 48, 13685–13693.10.1021/es5024916Suche in Google Scholar PubMed
Majzlan, J., Kiefer, S., Hermann, J., Števko, M., Sejkora, J., Chovan, M., Láncosz, T., Lazarov, M., Gerdes, A., Langenhorst, F., Borčinová Radková, A., Jamieson, H., and Milovský, R. (2018) Synergies in elemental mobility during weathering of tetrahedrite [(Cu,Fe,Zn)12(Sb,As)4S13 Field observations, electron microscopy, isotopes of Cu, C, O, radiometric dating, and water geochemistry. Chemical Geology, 488, 1–20.10.1016/j.chemgeo.2018.04.021Suche in Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. Canadian Mineralogist, 45, 1307–1324.10.2113/gscanmin.45.5.1307Suche in Google Scholar
Markl, G., Marks, M.A.W., Derrey, I., and Gühring, J.E. (2014) Weathering of cobalt arsenides: natural assemblages and calculated stability relations among secondary Ca–Mg–Co arsenates and carbonates. American Mineralogist, 99, 44–56.10.2138/am.2014.4540Suche in Google Scholar
Meisser, N., Plášil, J., Brunsperger, T., Lheur, C., and Škoda, R. (2019) Giftgrubeite, CaMn2Ca2(AsO42(AsO3OH)2×4H2O, a new member of the hureaulite group from Sainte-Marie-aux-Mines, Haut-Rhin Department, Vosges, France. Journal of Geosciences, 64, 73–80.10.3190/jgeosci.276Suche in Google Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114/115, 363–376.10.1007/BF01244563Suche in Google Scholar
Mills, S.J., Kolitsch, U., Miyawaki, R., Groat, L.A., and Poirier, G. (2009) Joëlbruggerite, Pb3Zn3(Sb5+Te6+As2O13(OH,O), the Sb5+ analogue of dugganite, from the Black Pine mine, Montana. American Mineralogist, 94, 1012–1017.10.2138/am.2009.3141Suche in Google Scholar
Petríček, V., Dušek, M., and Palatinus, L. (2014) Crystallographic Computing System Jana 2006: general features. Zeitschrift für Kristallographie, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar
Pierrot, R. (1964) Contribution à la minéralogie des arséniates calciques et calcaromagnésiens naturels. Bulletin de la Societé Française de Minéral et de Cristallographie, 87, 169–211.Suche in Google Scholar
Sarp, H. (1984) Villyaellenite, H2(Mn,Ca)5(AsO44×4H2O un nouveau mineral de Sainte-Marie aux-Mines (France). Schweizerische mineralogishe petrographische Mitteilungen, 64, 323–328.Suche in Google Scholar
Sarp, H., Deferne, J., and Liebich, B.W. (1981) La mcnéarite, NaCa5H4(AsO45×4H2O, un nouvel arséniate hydraté de calcium et de sodium. Schweizerische mineralogishe petrographische Mitteilungen, 61, 1–6.Suche in Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8.Suche in Google Scholar
Süsse, P., and Tillmann, B. (1987) The crystal structure of the new mineral richelsdorfite, Ca2Cu5Sb(Cl/(OH)6(AsO44×6H2O. Zeitschrift für Kristallographie, 179, 323–334.10.1524/zkri.1987.179.1-4.323Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Buoyant rise of anorthosite from a layered basic complex triggered by Rayleigh-Taylor instability: Insights from a numerical modeling study
- Chemically oscillating reactions in the formation of botryoidal malachite
- Micro- and nano-size hydrogarnet clusters and proton ordering in calcium silicate garnet: Part I. The quest to understand the nature of “water” in garnet continues
- Micro- and nano-size hydrogarnet clusters in calcium silicate garnet: Part II. Mineralogical, petrological, and geochemical aspects
- Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China
- Enigmatic diamonds from the Tolbachik volcano, Kamchatka
- Volcanic SiO2-cristobalite: A natural product of chemical vapor deposition
- Mg diffusion in forsterite from 1250–1600 °C
- Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): Processes and consequences
- Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, a new mineral and a possible sink for Sb during weathering of fahlore
- The new K, Pb-bearing uranyl-oxide mineral kroupaite: Crystal-chemical implications for the structures of uranyl-oxide hydroxy-hydrates
- Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions
- Memorial of Edward J. Olsen 1927–2020
Artikel in diesem Heft
- Buoyant rise of anorthosite from a layered basic complex triggered by Rayleigh-Taylor instability: Insights from a numerical modeling study
- Chemically oscillating reactions in the formation of botryoidal malachite
- Micro- and nano-size hydrogarnet clusters and proton ordering in calcium silicate garnet: Part I. The quest to understand the nature of “water” in garnet continues
- Micro- and nano-size hydrogarnet clusters in calcium silicate garnet: Part II. Mineralogical, petrological, and geochemical aspects
- Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China
- Enigmatic diamonds from the Tolbachik volcano, Kamchatka
- Volcanic SiO2-cristobalite: A natural product of chemical vapor deposition
- Mg diffusion in forsterite from 1250–1600 °C
- Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): Processes and consequences
- Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, a new mineral and a possible sink for Sb during weathering of fahlore
- The new K, Pb-bearing uranyl-oxide mineral kroupaite: Crystal-chemical implications for the structures of uranyl-oxide hydroxy-hydrates
- Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions
- Memorial of Edward J. Olsen 1927–2020