Home Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS
Article
Licensed
Unlicensed Requires Authentication

Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS

  • Huan Cui EMAIL logo , Kouki Kitajima , Michael J. Spicuzza , John H. Fournelle , Adam Denny , Akizumi Ishida , Feifei Zhang and John W. Valley
Published/Copyright: August 28, 2018
Become an author with De Gruyter Brill

Abstract

The Neoproterozoic sulfur isotope (δ34S) record is characterized by anomalously high δ34Spyrite values. Many δ34Spyrite values are higher than the contemporaneous δ34Ssulfate (i.e., δ34Spyrite > δ34Ssulfate), showing reversed fractionation. This phenomenon has been reported from the Neoproterozoic post-glacial strata globally and is called “Neoproterozoic superheavy pyrite.” The commonly assumed biogenic genesis of superheavy pyrite conflicts with current understanding of the marine sulfur cycle. Various models have been proposed to interpret this phenomenon, including extremely low concentrations of sulfate in seawaters or pore waters, or the existence of a geographically isolated and geochemically stratified ocean. Implicit and fundamental in all these published models is the assumption of a biogenic origin for pyrite genesis, which hypothesizes that the superheavy pyrite is syngenetic (in the water column) or early diagenetic (in shallow marine sediments) in origin and formed via microbial sulfate reduction (MSR). In this study, the Cryogenian Datangpo Formation in South China, which preserves some of the highest δ34Spyrite values up to +70‰, is studied by secondary ion mass spectrometry (SIMS) at unprecedented spatial resolutions (2 μm). Based on textures and the new sulfur isotope results, we propose that the Datangpo superheavy pyrite formed via thermochemical sulfate reduction (TSR) in hydrothermal fluids during late burial diagenesis and, therefore, lacks a biogeochemical connection to the Neoproterozoic sulfur cycle. Our study demonstrates that SEM-SIMS is an effective approach to assess the genesis of sedimentary pyrite using combined SEM petrography and micrometer-scale δ34S measurements by SIMS. The possibility that pervasive TSR has overprinted the primary δ34Spyrite signals during late diagenesis in other localities may necessitate the reappraisal of some of the δ34Spyrite profiles associated with superheavy pyrite throughout Earth’s history.


∗ Present address: Earth System Science (ESS) & Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussels, Belgium.

Email:

† Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.


Acknowledgments

This paper is a contribution to the American Mineralogist Special Collection “Isotopes, Minerals, And Petrology: Honoring John Valley.” The authors thank William Peck, Aaron Cavosie, and Jade Star Lackey for organizing this special collection of papers. The first author H.C. is a former Post-Doc (Jan 2016–May 2018) working with J.W.V. and expresses his gratitude to J.W.V. for mentorship, scholarship, passion, and support. This study could not have been made without the cohesive, inclusive, and positive atmosphere in the WiscSIMS and SEM labs, Department of Geoscience, University of Wisconsin–Madison.

This study is supported by the NASA Astrobiology Institute (NNA13AA94A). The WiscSIMS Lab is supported by NSF (EAR-1355590, EAR-1658823) and the University of Wisconsin–Madison. J.W.V. is also supported by NSF (EAR-1524336) and DOE (DE-FG02-93ER14389). The authors thank Bil Schneider, Tina Hill, and Phil Gopon for assistance in the SEM lab; Brian Hess, Noriko Kita, James Kern, Ian Orland, and Maciej Śliwiński for assistance in sample preparation and SIMS analysis; Huifang Xu for assistance in the microscope lab. We also thank Alan Jay Kaufman, Ganqing Jiang, Shuhai Xiao, Xianguo Lang, Kang-Jun Huang, and Maciej Śliwiński for helpful comments. This paper was improved by constructive reviews by David Fike and an anonymous reviewer. We thank Keith Putirka (editor) and Aaron Cavosie (associate editor) for handling this manuscript.

  1. Contributions: H.C. designed research; F.Z. provided samples; H.C. and K.K. performed SIMS analysis at J.W.V.’s WiscSIMS lab; H.C. and J.H.F. performed SEM and EPMA analyses; H.C. interpreted the data with contributions from all coauthors. H.C. wrote the manuscript with significant input from J.W.V. All authors contributed to discussion and manuscript revision.

References cited

Alonso-Azcarate, R., Bottrell, R., and Velasco, M. (1999) Pathways and distances of fluid flow during low-grade metamorphism: evidence from pyrite deposits of the Cameros Basin, Spain. Journal of Metamorphic Geology, 17, 339–348. https://doi.org/10.1046/j.1525-1314.1999.00202.x10.1046/j.1525-1314.1999.00202.xSearch in Google Scholar

Armstrong, J.T. (1988) Quantitative analysis of silicate and oxide minerals: comparison of Monte Carlo, ZAF and phi-rho-z procedures. Microbeam Analysis, 23, 239–246.Search in Google Scholar

Basuki, N.I., Taylor, B.E., and Spooner, E.T.C. (2008) Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi valley-type zinc-lead mineralization, Bongara area, northern Peru. Economic Geology, 103, 783–799. https://doi.org/10.2113/gsecongeo.103.4.783.10.2113/gsecongeo.103.4.783Search in Google Scholar

Bergmann, K.D. (2013) Constraints on the carbon cycle and climate during the early evolution of animals, 398 p. Ph.D. dissertation, California Institute of Technology, Pasadena.Search in Google Scholar

Berner, R.A. (1984) Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48, 605–615. https://doi.org/10.1016/0016-7037(84)90089-9.10.1016/0016-7037(84)90089-9Search in Google Scholar

Berner, R.A. (1989) Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time. Palaeogeography, Palaeoclimatology, Palaeoecology, 75, 97–122. https://doi.org/10.1016/0031-0182(89)90186-7.10.1016/0031-0182(89)90186-7Search in Google Scholar

Biehl, B.C., Reuning, L., Schoenherr, J., Lüders, V., and Kukla, P.A. (2016) Impacts of hydrothermal dolomitization and thermochemical sulfate reduction on secondary porosity creation in deeply buried carbonates:A case study from the Lower Saxony Basin, northwest Germany. AAPG Bulletin, 100, 597–621. https://doi.org/10.1306/01141615055.10.1306/01141615055Search in Google Scholar

Bond, D.P.G., and Wignall, P.B. (2010) Pyrite framboid study of marine Permian–Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin, 122, 1265–1279. https://doi.org/10.1130/b30042.1.10.1130/B30042.1Search in Google Scholar

Borowski, W.S., Hoehler, T.M., Alperin, M.J., Rodriguez N.M., and Paull, C.K. (2000) Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates. In C.K. Paull, R. Matsumoto, P.J. Wallace, and W.P. Dillon, Eds., Proceedings of the Ocean Drilling Program, Scientific Results, 164, 87–99.Search in Google Scholar

Böttcher, M.E. (2011) Sulfur isotopes. In J. Reitner and V. Thiel, Eds., Encyclopedia of Geobiology, 864–866. Springer Netherlands.10.1007/978-1-4020-9212-1_131Search in Google Scholar

Böttcher, M.E., Smock, A.M., and Cypionka, H. (1998) Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature. Chemical Geology, 146, 127–134. https://doi.org/10.1016/S0009-2541(98)00004-7.10.1016/S0009-2541(98)00004-7Search in Google Scholar

Bowles, M.W., Mogollón, J.M., Kasten, S., Zabel, M., and Hinrichs, K.-U. (2014) Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities. Science, 344, 889–891. https://doi.org/10.1126/science.1249213.10.1126/science.1249213Search in Google Scholar PubMed

Bradley, A.S., Leavitt, W.D., Schmidt, M., Knoll, A.H., Girguis, P.R., and Johnston, D.T. (2016) Patterns of sulfur isotope fractionation during microbial sulfate reduction. Geobiology, 14, 91–101. https://doi.org/10.1111/gbi.12149.10.1111/gbi.12149Search in Google Scholar PubMed

Cai, C., Hu, W., and Worden, R.H. (2001) Thermochemical sulphate reduction in Cambro–Ordovician carbonates in Central Tarim. Marine and Petroleum Geology, 18, 729–741. https://doi.org/10.1016/S0264-8172(01)00028-9.10.1016/S0264-8172(01)00028-9Search in Google Scholar

Cai, C., Worden, R.H., Bottrell, S.H., Wang, L., and Yang, C. (2003) Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China. Chemical Geology, 202, 39–57. https://doi.org/10.1016/S0009-2541(03)00209-2.10.1016/S0009-2541(03)00209-2Search in Google Scholar

Cai, C., Xie, Z., Worden, R.H., Hu, G., Wang, L., and He, H. (2004) Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation East Sichuan Basin, China: towards prediction of fatal H2S concentrations. Marine and Petroleum Geology, 21, 1265–1279. https://doi.org/10.1016/jmarpetgeo.2004.09.003.10.1016/j.marpetgeo.2004.09.003Search in Google Scholar

Cai, Y., Hua, H., Xiao, S., Schiffbauer, J.D., and Li, P. (2010) Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: Importance of event deposits. PALAIOS, 25, 487–506. https://doi.org/10.2110/palo.2009.p09-133r.10.2110/palo.2009.p09-133rSearch in Google Scholar

Cai, C., Hu, G., Li, H., Jiang, L., He, W., Zhang, B., Jia, L., and Wang, T. (2015) Origins and fates of H2S in the Cambrian and Ordovician in Tazhong area: Evidence from sulfur isotopes, fluid inclusions and production data. Marine and Petroleum Geology, 67, 408–418. https://doi.org/10.1016/jmarpetgeo.2015.05.007.10.1016/j.marpetgeo.2015.05.007Search in Google Scholar

Calver, C.R., Crowley, J.L., Wingate, M.T.D., Evans, D.A.D., Raub, T.D., and Schmitz, M.D. (2013) Globally synchronous Marinoan deglaciation indicated by U-Pb geochronology of the Cottons Breccia, Tasmania, Australia. Geology, 41, 1127–1130. https://doi.org/10.1130/g34568.1.10.1130/G34568.1Search in Google Scholar

Canfield, D.E. (2001a) Biogeochemistry of sulfur isotopes. Reviews in Mineralogy and Geochemistry, 43, 607–636.10.1515/9781501508745-015Search in Google Scholar

Canfield, D.E. (2001b) Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta, 65, 1117–1124. https://doi.org/10.1016/S0016-7037(00)00584-6.10.1016/S0016-7037(00)00584-6Search in Google Scholar

Canfield, D.E. (2004) The evolution of the Earth surface sulfur reservoir. American Journal of Science, 304, 839–861. https://doi.org/10.2475/ajs.304.10.839.10.2475/ajs.304.10.839Search in Google Scholar

Canfield, D.E., and Farquhar, J. (2012) The Global Sulfur Cycle. In A.H. Knoll, D.E. Canfield, and K.O. Konhauser, Eds., Fundamentals of Geobiology, p. 49–64. Wiley.10.1002/9781118280874.ch5Search in Google Scholar

Canfield, D.E., and Teske, A. (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382, 127–132. https://doi.org/10.1038/382127a0.10.1038/382127a0Search in Google Scholar PubMed

Canfield, D.E., and Thamdrup, B. (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 266, 1973–1975. https://doi.org/10.1126/science.11540246.10.1126/science.11540246Search in Google Scholar PubMed

Canfield, D.E., Farquhar, J., and Zerkle, A.L. (2010) High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology, 38, 415–418. https://doi.org/10.1130/g30723.1.10.1130/G30723.1Search in Google Scholar

Cao, H., Kaufman, A.J., Shan, X., Cui, H., and Zhang, G. (2016) Sulfur isotope constraints on marine transgression in the lacustrine Upper Cretaceous Songliao Basin, northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 451, 152–163. https://doi.Org/10.1016/j.palaeo.2016.02.041.10.1016/j.palaeo.2016.02.041Search in Google Scholar

Chambers, L.A., Trudinger, P.A., Smith, J.W., and Burns, M.S. (1975) Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. Canadian Journal of Microbiology, 21, 1602–1607. https://doi.org/10.1139/m75-234.10.1139/m75-234Search in Google Scholar PubMed

Chen, D., and Chen, X. (1992) Geological and geochemical characteristics of Songtan hydrothermal sedimentary manganese deposits, Guizhou. Acta Sedimentologica Sinica, 10, 35–43 (in Chinese with English abstract).Search in Google Scholar

Chen, X., Li, D., Ling, H.-F., and Jiang, S.-Y. (2008) Carbon and sulfur isotopic compositions of basal Datangpo Formation, northeastern Guizhou, South China: Implications for depositional environment. Progress in Natural Science, 18, 421–429. https://doi.org/10.1016/j.pnsc.2007.10.008.10.1016/j.pnsc.2007.10.008Search in Google Scholar

Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J.D., Yuan, X., and Xiao, S. (2013) Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224, 690–701. https://doi.org/10.1016/j.precamres.2012.11.004.10.1016/j.precamres.2012.11.004Search in Google Scholar

Chen, Z., Zhou, C., Xiao, S., Wang, W., Guan, C., Hua, H., and Yuan, X. (2014) New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Reports, 4, 4180. https://doi.org/10.1038/srep04180.10.1038/srep04180Search in Google Scholar PubMed PubMed Central

Chen, D., Zhou, X., Fu, Y., Wang, J., and Yan, D. (2015) New U–Pb zircon ages of the Ediacaran–Cambrian boundary strata in South China. Terra Nova, 27, 62–68. https://doi.org/10.1111/ter.12134.10.1111/ter.12134Search in Google Scholar

Chu, X., Li, R., and Ohmoto, H. (1998) Sulfur isotope geochemistry of the late Proterozoic in Southern China. Chinese Science Bulletin, 43, Supplement 1, 27–27. https://doi.org/10.1007/bf02891401.10.1007/BF02891401Search in Google Scholar

Chu, X., Li, R., Zhang, T., and Zhang, Q. (2001) Implication of ultra-high δ34S values of pyrite in manganese mineralization beds of Datangpo stage. Bulletin of Mineralogy, Petrology and Geochemistry, 20, 320–322 (in Chinese with English abstract).Search in Google Scholar

Chu, X., Zhang, Q., Zhang, T., and Feng, L. (2003) Sulfur and carbon isotopic variations in Neoproterozoic sedimentary rocks from southern China. Progress in Natural Science, 13, 875–880. https://doi.org/10.1080/10020070312331344580.10.1080/10020070312331344580Search in Google Scholar

Claypool, G.E. (2004) Ventilation of marine sediments indicated by depth profiles of pore water sulfate and δ34S. In R.J. Hill, J. Leventhal, Z. Aizenshtat, M.J. Baedecker, G. Claypool, R. Eganhouse, M. Goldhaber, and K. Peters, Eds., The Geochemical Society Special Publications, 9, 59–65. Elsevier.10.1016/S1873-9881(04)80007-5Search in Google Scholar

Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y. (2005) U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308, 95–98. https://doi.org/10.1126/science.1107765.10.1126/science.1107765Search in Google Scholar

Cooke, D.R., Bull, S.W., Large, R.R., and McGoldrick, P.J. (2000) The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (Sedex) deposits. Economic Geology, 95, 1–18. https://doi.org/10.2113/gsecongeo.95.1.1.10.2113/gsecongeo.95.1.1Search in Google Scholar

Crowe, S.A., Paris, G., Katsev, S., Jones, C., Kim, S.-T., Zerkle, A.L., Nomosatryo, S., Fowle, D.A., Adkins, J.F., and Sessions, A.L. (2014) Sulfate was a trace constituent of Archean seawater. Science, 346, 735–739. https://doi.org/10.1126/science.1258966.10.1126/science.1258966Search in Google Scholar

Cui, H. (2015) Authigenesis, biomineralization, and carbon–sulfur cycling in the Ediacaran Ocean, 181 p. Ph.D. dissertation, University of Maryland, College Park, Maryland.Search in Google Scholar

Cui, H., Grazhdankin, D.V., Xiao, S., Peek, S., Rogov, V.I., Bykova, N.V., Sievers, N.E., Liu, X.-M., and Kaufman, A.J. (2016a) Redox-dependent distribution of early macro-organisms: Evidence from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 122–139. https://doi.org/10.1016/j.palaeo.2016.08.015.10.1016/j.palaeo.2016.08.015Search in Google Scholar

Cui, H., Kaufman, A.J., Xiao, S., Peek, S., Cao, H., Min, X., Cai, Y., Siegel, Z., Liu, X.M., Peng, Y., Schiffbauer, J.D., and Martin, A.J. (2016b) Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology, 14, 344–363. https://doi.org/10.1111/gbi.12178.10.1111/gbi.12178Search in Google Scholar

Cui, H., Kaufman, A.J., Xiao, S., Zhou, C., and Liu, X.-M. (2017) Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chemical Geology, 450, 59–80. https://doi.org/10.1016/j.chemgeo.2016.12.010.10.1016/j.chemgeo.2016.12.010Search in Google Scholar

Cui, H., Kitajima, K., Spicuzza, M.J., Fournelle, J.H., Ishida, A., Brown, P.E., and Valley, J.W. (2018) Searching for the Great Oxidation Event in North America: A reappraisal of the Huronian Supergroup by SIMS sulfur four-isotope analysis. Astrobiology, 18, 519–538. https://doi.org/10.1089/ast.2017.172210.1089/ast.2017.1722Search in Google Scholar

Ding, T., Valkiers, S., Kipphardt, H., De Bièvre, P., Taylor, P.D.P., Gonfiantini, R., and Krouse, R. (2001) Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochimica et Cosmochimica Acta, 65, 2433–2437. https://doi.org/10.1016/S0016-7037(01)00611-1.10.1016/S0016-7037(01)00611-1Search in Google Scholar

Donovan, J.J., Kremser, D., Fournelle, J., and Goemann, K. (2018) Probe for Windows User’s Guide and Reference, Enterprise Edition. Probe Software, Inc., Eugene, Oregon.Search in Google Scholar

Drake, H., Astrom, M.E., Heim, C., Broman, C., Astrom, J., Whitehouse, M., Ivarsson, M., Siljestrom, S., and Sjovall, P. (2015) Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite. Nature Communications, 6, 7020. https://doi.org/10.1038/ncomms8020.10.1038/ncomms8020Search in Google Scholar PubMed PubMed Central

Drake, H., Heim, C., Roberts, N.M.W., Zack, T., Tillberg, M., Broman, C., Ivarsson, M., Whitehouse, M.J., and Åström, M.E. (2017) Isotopic evidence for microbial production and consumption of methane in the upper continental crust throughout the Phanerozoic eon. Earth and Planetary Science Letters, 470, 108–118. https://doi.org/10T016/j.epsl.2017.04.034.10.1016/j.epsl.2017.04.034Search in Google Scholar

Duda, J.-P., Zhu, M., and Reitner, J. (2015) Depositional dynamics of a bituminous carbonate facies in a tectonically induced intra-platform basin: the Shibantan Member (Dengying Formation, Ediacaran Period). Carbonates and Evaporites, 31, 87–99. https://doi.org/10.1007/s13146-015-0243-8.10.1007/s13146-015-0243-8Search in Google Scholar

Eldridge, C.S., Walshe, J.L., Compston, W., Williams, I.S., Both, R.A., and Ohmoto, H. (1989) Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe SHRIMP: I. An example from the Rammelsberg orebody—A reply. Economic Geology, 84, 453–457. https://doi.org/10.2113/gsecongeo.84.2.453.10.2113/gsecongeo.84.2.453Search in Google Scholar

Feng, L., Chu, X., Huang, J., Zhang, Q., and Chang, H. (2010) Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research, 18, 632–637. https://doi.org/10.1016/j.gr.2010.02.011.10.1016/j.gr.2010.02.011Search in Google Scholar

Ferrini, V., Fayek, M., De Vito, C., Mignardi, S., and Pignatti, J. (2010) Extreme sulphur isotope fractionation in the deep Cretaceous biosphere. Journal of the Geological Society, 167, 1009–1018. https://doi.org/10.1144/0016-76492009-161.10.1144/0016-76492009-161Search in Google Scholar

Fike, D.A., Bradley, A.S., and Rose, C.V. (2015) Rethinking the ancient sulfur cycle. Annual Review of Earth and Planetary Sciences, 43, 593–622. https://doi.org/10.1146/annurev-earth-060313-054802.10.1146/annurev-earth-060313-054802Search in Google Scholar

Fike, D.A., and Grotzinger, J.P. (2008) A paired sulfate–pyrite δ34S approach to understanding the evolution of the Ediacaran–Cambrian sulfur cycle. Geochimica et Cosmochimica Acta, 72, 2636–2648. https://doi.org/10.1016/jgca.2008.03.02L10.1016/j.gca.2008.03.021Search in Google Scholar

Fike, D.A., and Grotzinger, J.P. (2010) A δ34SSO4 approach to reconstructing biogenic pyrite burial in carbonate-evaporite basins: An example from the Ara Group, Sultanate of Oman. Geology, 38, 371–374. https://doi.org/10.1130/g30230.1.10.1130/G30230.1Search in Google Scholar

Fike, D.A., Grotzinger, J.P., Pratt, L.M., and Summons, R.E. (2006) Oxidation of the Ediacaran ocean. Nature, 444, 744–747. https://doi.org/10.1038/nature05345.10.1038/nature05345Search in Google Scholar PubMed

Fischer, W.W., Fike, D.A., Johnson, J.E., Raub, T.D., Guan, Y., Kirschvink, J.L., and Eiler, J.M. (2014) SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. Proceedings of the National Academy of Sciences, 111, 5468–5473. https://doi.org/10.1073/pnas.1322577111.10.1073/pnas.1322577111Search in Google Scholar

Friedman, I., and O’Neil, J.R. (1977) Data of geochemistry: Compilation of stable isotope fractionation factors of geochemical interest. Geological Survey Professional Paper 440, Chapter KK, p. KK1–KK12.Search in Google Scholar

Fu, Y., van Berk, W., and Schulz, H.-M. (2016) Hydrogen sulfide formation, fate, and behavior in anhydrite-sealed carbonate gas reservoirs: A three-dimensional reactive mass transport modeling approach. AAPG Bulletin, 100, 843–865. https://doi.org/10.1306/12111514206.10.1306/12111514206Search in Google Scholar

Gadd, M.G., Layton-Matthews, D., Peter, J.M., Paradis, S., and Jonasson, I.R. (2017) The world-class Howard’s Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part II: the roles of thermochemical and bacterial sulfate reduction in metal fixation. Mineralium Deposita, 52, 405–419. https://doi.org/10.1007/s00126-016-0672-x.10.1007/s00126-016-0672-xSearch in Google Scholar

Ghazban, F., Schwarcz, H.P., and Ford, D.C. (1990) Carbon and sulfur isotope evidence for in situ reduction of sulfate, Nanisivik lead-zinc deposits, Northwest Territories, Baffin Island, Canada. Economic Geology, 85, 360–375. https://doi.org/10.2113/gsecongeo.85.2.360.10.2113/gsecongeo.85.2.360Search in Google Scholar

Goldhaber, M., and Kaplan, I. (1975) Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Science, 119, 42–55.10.2136/sssaspecpub10.c2Search in Google Scholar

Goldhaber, M., and Kaplan, I. (1980) Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Marine Chemistry, 9, 95–143. https://doi.org/10.1016/0304-4203(80)90063-8.10.1016/0304-4203(80)90063-8Search in Google Scholar

Goldstein, T.P., and Aizenshtat, Z. (1994) Thermochemical sulfate reduction: A review. Journal of Thermal Analysis, 42, 241–290. https://doi.org/10.1007/bf02547004.10.1007/BF02547004Search in Google Scholar

Gomes, M.L., and Hurtgen, M.T. (2015) Sulfur isotope fractionation in modern euxinic systems: Implications for paleoenvironmental reconstructions of paired sulfate–sulfide isotope records. Geochimica et Cosmochimica Acta, 157, 39–55. https://doi.org/10.1016/j.gca.2015.02.031.10.1016/j.gca.2015.02.031Search in Google Scholar

Gomes, M.L., Fike, D.A., Bergmann, K.D., Jones, C., and Knoll, A.H. (2018) Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures. Geobiology, 16, 17–34. https://doi.org/10.1111/gbi.12265.10.1111/gbi.12265Search in Google Scholar

Gorjan, P., Veevers, J.J., and Walter, M.R. (2000) Neoproterozoic sulfur-isotope variation in Australia and global implications. Precambrian Research, 100, 151–179. https://doi.org/10.1016/s0301-9268(99)00073-x.10.1016/S0301-9268(99)00073-XSearch in Google Scholar

Gorjan, P., Walter, M.R., and Swart, R. (2003) Global Neoproterozoic (Sturtian) post-glacial sulfide-sulfur isotope anomaly recognised in Namibia. Journal of African Earth Sciences, 36, 89–98. https://doi.org/10.1016/S0899-5362(03)00002-2.10.1016/S0899-5362(03)00002-2Search in Google Scholar

Graham, U., and Ohmoto, H. (1994) Experimental study of formation mechanisms of hydrothermal pyrite. Geochimica et Cosmochimica Acta, 58, 2187–2202. https://doi.org/10.1016/0016-7037(94)90004-3.10.1016/0016-7037(94)90004-3Search in Google Scholar

Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., and Canfield, D.E. (2002) Calibration of sulfate levels in the Archean ocean. Science, 298, 2372–2374. https://doi.org/10.1126/science.1078265.10.1126/science.1078265Search in Google Scholar

Halverson, G.P., and Hurtgen, M.T. (2007) Ediacaran growth of the marine sulfate reservoir. Earth and Planetary Science Letters, 263, 32–44. https://doi.org/10.1016/j.epsl.2007.08.022.10.1016/j.epsl.2007.08.022Search in Google Scholar

Halverson, G.P., and Shields-Zhou, G. (2011) Chemostratigraphy and the Neoproterozoic glaciations. In E. Arnaud, G.P Halverson, and G. Shields-Zhou, Eds. The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoirs, 36, 51–66.10.1144/M36.4Search in Google Scholar

Halverson, G.P., Hurtgen, M.T., Porter, S.M., and Collins, A.S. (2009) Neoproterozoic– Cambrian biogeochemical evolution. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on Southwestern Gondwana. Developments in Precambrian Geology, 16, 351–365. https://doi.org/10.1016/s0166-2635(09)01625-9.10.1016/S0166-2635(09)01625-9Search in Google Scholar

Halverson, G.P., Wade, B.P., Hurtgen, M.T., and Barovich, K.M. (2010) Neoproterozoic chemostratigraphy. Precambrian Research, 182, 337–350. https://doi.org/10.1016/j.precamres.2010.04.007.10.1016/j.precamres.2010.04.007Search in Google Scholar

Hao, F., Guo, T., Zhu, Y., Cai, X., Zou, H., and Li, P. (2008) Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China. AAPG Bulletin, 92, 611–637.10.1306/01210807090Search in Google Scholar

Harrison, A., and Thode, H. (1958) Mechanism of the bacterial reduction of sulfate from isotope fractionation studies. Transactions of the Royal Faraday Society, 54, 84–92. https://doi.org/10.1039/tf9585400084.10.1039/tf9585400084Search in Google Scholar

Hayes, J.M., Lambert, I.B., and Strauss, H. (1992) The sulfur-isotopic record. In J.W. Schopf and C. Klein, Eds., The Proterozoic Biosphere: A Multidisciplinary Study, p. 129–132. Cambridge University Press.Search in Google Scholar

He, Z., Yang, R., Gao, J., Cheng, W., and Wen, G. (2013a) The structure character of manganese ore deposit of Datangpo-period of Neoproterozoic in Songtao of Guizhou. China’s Manganese Industry, 31, 5–16 (in Chinese with English abstract).Search in Google Scholar

He, Z., Yang, R., Gao, J., Cheng, W., Zhang, R., and Zhang, P. (2013b) Sedimentary geochemical characteristics of manganese deposits in Xixibao, Songtao County, Guizhou Province. Geochimica, 42, 576–588 (in Chinese with English abstract).Search in Google Scholar

Heydari, E., and Moore, C.H. (1989) Burial diagenesis and thermochemical sulfate reduction, Smackover Formation, southeastern Mississippi salt basin. Geology, 17, 1080–1084.10.1130/0091-7613(1989)017<1080:BDATSR>2.3.CO;2Search in Google Scholar

Hoffman, P.F., and Li, Z.-X. (2009) A palaeogeographic context for Neoproterozoic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277, 158–172. https://doi.org/10.1016/j.palaeo.2009.03.013.10.1016/j.palaeo.2009.03.013Search in Google Scholar

Hoffman, P.F., and Schrag, D.P. (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155. https://doi.org/10.1046/j.1365-3121.2002.00408.x.10.1046/j.1365-3121.2002.00408.xSearch in Google Scholar

Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P. (1998) A Neoproterozoic Snowball Earth. Science, 281, 1342–1346. https://doi.org/10.1126/science.281.5381.1342.10.1126/science.281.5381.1342Search in Google Scholar

Hoffman, P.F., Abbot, D.S., Ashkenazy, Y., Benn, D.I., Brocks, J.J., Cohen, P.A., Cox, G.M., Creveling, J.R., Donnadieu, Y., Erwin, D.H., and others. (2017) Snowball Earth climate dynamics and Cryogenian geology–geobiology. Science Advances, 3, e1600983. https://doi.org/10.1126/sciadv.1600983.10.1126/sciadv.1600983Search in Google Scholar

Hurtgen, M.T., Arthur, M.A., Suits, N.S., and Kaufman, A.J. (2002) The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth and Planetary Science Letters, 203, 413–429. https://doi.org/10.1016/s0012-821x(02)00804-x.10.1016/S0012-821X(02)00804-XSearch in Google Scholar

Hurtgen, M.T., Arthur, M.A., and Halverson, G.P. (2005) Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology, 33, 41–44. https://doi.org/10.1130/g20923.1.10.1130/G20923.1Search in Google Scholar

Jia, L., Cai, C., Yang, H., Li, H., Wang, T., Zhang, B., Jiang, L., and Tao, X. (2015) Thermochemical and bacterial sulfate reduction in the Cambrian and Lower Ordovician carbonates in the Tazhong Area, Tarim Basin, NW China: evidence from fluid inclusions, C., S, and Sr isotopic data. Geofluids, 15, 421–437. https://doi.org/10.1111/gfl.12105.10.1111/gfl.12105Search in Google Scholar

Jiang, G., Sohl, L.E., and Christie-Blick, N. (2003) Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications. Geology, 31,917–920. https://doi.org/10.1130/g19790.1.10.1130/G19790.1Search in Google Scholar

Jiang, G., Kaufman, A.J., Christie-Blick, N., Zhang, S., and Wu, H. (2007) Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 261, 303–320. https://doi.org/10.1016/j.epsl.2007.07.009.10.1016/j.epsl.2007.07.009Search in Google Scholar

Jiang, G., Shi, X., Zhang, S., Wang, Y., and Xiao, S. (2011) Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19, 831–849. https://doi.org/10.1016/j.gr.2011.01.006.10.1016/j.gr.2011.01.006Search in Google Scholar

Jiang, L., Worden, R.H., and Cai, C.F. (2014) Thermochemical sulfate reduction and fluid evolution of the Lower Triassic Feixianguan Formation sour gas reservoirs, northeast Sichuan Basin, China. AAPG Bulletin, 98, 947–973. https://doi.org/10.1306/10171312220.10.1306/10171312220Search in Google Scholar

Jiang, L., Worden, R.H., and Cai, C. (2015) Generation of isotopically and compositionally distinct water during thermochemical sulfate reduction (TSR) in carbonate reservoirs: Triassic Feixianguan Formation, Sichuan Basin, China. Geochimica et Cosmochimica Acta, 165, 249–262. https://doi.org/10.1016/j.gca.2015.05.033.10.1016/j.gca.2015.05.033Search in Google Scholar

Jiang, L., Worden, R.H., and Yang, C. (2018) Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality. Geochimica et Cosmochimica Acta, 223, 127–140. https://doi.org/10.1016/j.gca.2017.11.032.10.1016/j.gca.2017.11.032Search in Google Scholar

Johnson, J.E., Webb, S.M., Thomas, K., Ono, S., Kirschvink, J.L., and Fischer, W.W. (2013) Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proceedings of the National Academy of Sciences, 110, 11238–11243. https://doi.org/10.1073/pnas.1305530110.10.1073/pnas.1305530110Search in Google Scholar PubMed PubMed Central

Johnston, D.T., Wing, B.A., Farquhar, J., Kaufman, A.J., Strauss, H., Lyons, T.W., Kah, L.C., and Canfield, D.E. (2005) Active microbial sulfur disproportionation in the Mesoproterozoic. Science, 310, 1477–1479. https://doi.org/10.1126/science.1117824.10.1126/science.1117824Search in Google Scholar PubMed

Jones, D., Hartley, J., Frisch, G., Purnell, M., and Darras, L. (2012) Non-destructive, safe removal of conductive metal coatings from fossils: a new solution. Palaeontologia Electronica, 15, 4T.10.26879/303Search in Google Scholar

Jørgensen, B.B., and Kasten, S. (2006) Sulfur cycling and methane oxidation. In H.D. Schulz and M. Zabel, Eds., Marine Geochemistry, p. 271–309. Springer-Verlag.10.1007/3-540-32144-6_8Search in Google Scholar

Jørgensen, B.B., Isaksen, M.F., and Jannasch, H.W. (1992) Bacterial sulfate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science, 258, 1756–1757. https://doi.org/10.1126/science.258.5089.1756.10.1126/science.258.5089.1756Search in Google Scholar PubMed

Jørgensen, B.B., Böttcher, M.E., Lüschen, H., Neretin, L.N., and Volkov, I.I. (2004) Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments 1. Geochimica et Cosmochimica Acta, 68, 2095–2118. https://doi.org/10.1016/_j.gca.2003.07.017.10.1016/j.gca.2003.07.017Search in Google Scholar

Kah, L.C., and Bartley, J.K. (2011) Protracted oxygenation of the Proterozoic biosphere. International Geology Review, 53, 1424–1442. https://doi.org/10.1080/00206814.2010.527651.10.1080/00206814.2010.527651Search in Google Scholar

Kah, L.C., Lyons, T.W., and Frank, T.D. (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431, 834–838. https://doi.org/10.1038/nature02974.10.1038/nature02974Search in Google Scholar

Kaplan, I.R., and Rafter, T.A. (1958) Fractionation of stable isotopes of sulfur by Thiobacilli. Science, 127, 517–518. https://doi.org/10.1126/science.127.3297.517.10.1126/science.127.3297.517Search in Google Scholar

Kaplan, I.R., and Rittenberg, S.C. (1964) Microbiological fractionation of sulphur isotopes. Microbiology, 34, 195–212. https://doi.org/10.1099/00221287-34-2-195.10.1099/00221287-34-2-195Search in Google Scholar

Kelley, K.D., Dumoulin, J.A., and Jennings, S. (2004a) The Anarraaq Zn-Pb-Ag and Barite Deposit, Northern Alaska: Evidence for Replacement of Carbonate by Barite and Sulfides. Economic Geology, 99, 1577–1591. https://doi.org/10.2113/gsecongeo.99.7.1577.10.2113/gsecongeo.99.7.1577Search in Google Scholar

Kelley, K.D., Leach, D.L., Johnson, C.A., Clark, J.L., Fayek, M., Slack, J.F., Anderson, V.M., Ayuso, R.A., and Ridley, W.I. (2004b) Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: Implications for ore formation. Economic Geology, 99, 1509–1532. https://doi.org/10.2113/gsecongeo.99.7.1509.10.2113/gsecongeo.99.7.1509Search in Google Scholar

King, H.E., Walters, C.C., Horn, W.C., Zimmer, M., Heines, M.M., Lamberti, W.A., Kliewer, C., Pottorf, R.J., and Macleod, G. (2014) Sulfur isotope analysis of bitumen and pyrite associated with thermal sulfate reduction in reservoir carbonates at the Big Piney-La Barge production complex. Geochimica et Cosmochimica Acta, 134, 210–220. https://doi.org/10.1016/j.gca.2013.11.005.10.1016/j.gca.2013.11.005Search in Google Scholar

Kirschvink, J.L. (1992) Late Proterozoic low-latitude global glaciation: the Snowball Earth. In J.W. Schopf, C. Klein, and D. Des Maris, Eds., The Proterozoic Biosphere: A Multidisciplinary Study, 51–52. Cambridge University Press.Search in Google Scholar

Kiyosu, Y. (1980) Chemical reduction and sulfur-isotope effects of sulfate by organic matter under hydrothermal conditions. Chemical Geology, 30, 47–56. https://doi.org/10.1016/0009-2541(80)90115-1.10.1016/0009-2541(80)90115-1Search in Google Scholar

Kiyosu, Y., and Krouse, H.R. (1990) The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochemical Journal, 24, 21–27. https://doi.org/10.2343/geochemj.24.21.10.2343/geochemj.24.21Search in Google Scholar

Kohn, M.J., Riciputi, L.R., Stakes, D., and Orange, D.L. (1998) Sulfur isotope variability in biogenic pyrite: Reflections of heterogeneous bacterial colonization? American Mineralogist, 83, 1454–1468. https://doi.org/10.2138/am-1997-11-1234.10.2138/am-1998-11-1234Search in Google Scholar

Krouse, H.R., Viau, C.A., Eliuk, L.S., Ueda, A., and Halas, S. (1988) Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature, 333, 415–419. https://doi.org/10.1038/333415a0.10.1038/333415a0Search in Google Scholar

Kunzmann, M., Bui, T.H., Crockford, P.W., Halverson, G.P., Scott, C., Lyons, T.W., and Wing, B.A. (2017) Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation. Geology, 45, 207–210. https://doi.org/10.1130/g38602.1.10.1130/G38602.1Search in Google Scholar

Lan, Z., Li, X.-H., Zhang, Q., and Li, Q.-L. (2015a) Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U–Pb and O isotope evidence from the Jiangkou Group, South China. Precambrian Research, 267, 28–38. https://doi.org/10.1016/j.precamres.2015.06.002.10.1016/j.precamres.2015.06.002Search in Google Scholar

Lan, Z., Li, X.-H., Zhu, M., Zhang, Q., and Li, Q.-L. (2015b) Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U–Pb zircon age constraints and regional and global significance. Precambrian Research, 263, 123–141. https://doi.org/10.1016/j.precamres.2015.03.012.10.1016/j.precamres.2015.03.012Search in Google Scholar

Lang, X. (2016) The Process of Nanhua Glaciation and the Synglacial Evolution of Marine Geochemistry in the South China Block, China. Ph.D. dissertation (in Chinese with English abstract), Peking University, Beijing, China, 108 p.Search in Google Scholar

Lang, X., Shen, B., Peng, Y., Zhou, C., and Huang, K. (2016) A new pathway of sulfur cycling in the Cryogenian Ocean. Geological Society of America Abstracts with Programs, vol. 48, no. 7, p. 48, Denver, Colorado.10.1130/abs/2016AM-282760Search in Google Scholar

Leavitt, W.D. (2014) On the mechanisms of sulfur isotope fractionation during microbial sulfate reduction, 242 p. Ph.D. dissertation, Harvard University, Cambridge, Massachusetts.Search in Google Scholar

Leavitt, W.D., Bradley, A.S., Halevy, I., and Johnston, D.T. (2013) Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proceedings of the National Academy of Sciences, 110, 11244–11249. https://doi.org/10.1073/pnas.1218874110.10.1073/pnas.1218874110Search in Google Scholar

Li, Z.-X. (2011) Breakup of Rodinia. In J. Reitner and V. Thiel, Eds., Encyclopedia of Geobiology, p. 206–210. Springer.10.1007/978-1-4020-9212-1_38Search in Google Scholar

Li, R., Zhang, S., Lei, J., Shen, Y., Chen, J., and Chu, X. (1996) Temporal and spacial variation in δ34S values of pyrite from Sinian strata discussion on relationship between Yangtze Block and the late Proterozoic supercontinent. Scientia Geologica Sinica, 31, 209–217 (in Chinese with English abstract).Search in Google Scholar

Li, R., Chen, J., Zhang, S., Lei, J., Shen, Y., and Chen, X. (1999a) Spatial and temporal variations in carbon and sulfur isotopic compositions of Sinian sedimentary rocks in the Yangtze platform, South China. Precambrian Research, 97, 59–75. https://doi.org/10.1016/s0301-9268(99)00022-4.10.1016/S0301-9268(99)00022-4Search in Google Scholar

Li, Z., Li, X., Kinny, P., and Wang, J. (1999b) The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters, 173, 171–181. https://doi.org/10.1016/S0012-821X(99)00240-X.10.1016/S0012-821X(99)00240-XSearch in Google Scholar

Li, C., Love, G.D., Lyons, T.W., Scott, C.T., Feng, L., Huang, J., Chang, H., Zhang, Q., and Chu, X. (2012) Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth and Planetary Science Letters, 331–332, 246–256. https://doi.org/10.1016/j.epsl.2012.03.018.10.1016/j.epsl.2012.03.018Search in Google Scholar

Li, Z.-X., Evans, D.A.D., and Halverson, G.P. (2013) Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology, 294, 219–232. https://doi.org/10.1016/j.sedgeo.2013.05.016.10.1016/j.sedgeo.2013.05.016Search in Google Scholar

Lin, Q., Wang, J., Algeo, T.J., Sun, F., and Lin, R. (2016a) Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea. Marine Geology, 379, 100–108. https://doi.org/10.1016/j.margeo.2016.05.016.10.1016/j.margeo.2016.05.016Search in Google Scholar

Lin, Z., Sun, X., Peckmann, J., Lu, Y., Xu, L., Strauss, H., Zhou, H., Gong, J., Lu, H., and Teichert, B.M.A. (2016b) How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea. Chemical Geology, 440, 26–41. https://doi.org/10.1016/j.chemgeo.2016.07.007.10.1016/j.chemgeo.2016.07.007Search in Google Scholar

Lin, Z., Sun, X., Lu, Y., Strauss, H., Xu, L., Gong, J., Teichert, B.M.A., Lu, R., Lu, H., Sun, W., and Peckmann, J. (2017) The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: Insights from the South China Sea. Chemical Geology, 449, 15–29. https://doi.org/10.1016/j.chemgeo.2016.11.032.10.1016/j.chemgeo.2016.11.032Search in Google Scholar

Liu, A.G. (2016) Framboidal pyrite shroud confirms the ‘death mask’ model for moldic preservation of Ediacaran soft-bodied organisms. Palaios, 31, 259–274. https://doi.org/10.2110/palo.2015.095.10.2110/palo.2015.095Search in Google Scholar

Liu, T.-B., Maynard, J.B., and Alten, J. (2006) superheavy S isotopes from glacier-associated sediments of the Neoproterozoic of south China: Oceanic anoxia or sulfate limitation? Geological Society of America Memoirs, 198, 205–222. https://doi.org/10.1130/2006.1198(12).10.1130/2006.1198(12)Search in Google Scholar

Liu, Q., Zhu, D., Jin, Z., Liu, C., Zhang, D., and He, Z. (2016) Coupled alteration of hydrothermal fluids and thermal sulfate reduction (TSR) in ancient dolomite reservoirs—An example from Sinian Dengying Formation in Sichuan Basin, southern China. Precambrian Research, 285, 39–57. https://doi.org/10.1016/j.precamres.2016.09.006.10.1016/j.precamres.2016.09.006Search in Google Scholar

Logan, G.A., Hayes, J., Hieshima, G.B., and Summons, R.E. (1995) Terminal Proterozoic reorganization of biogeochemical cycles. Nature, 376, 53–56. https://doi.org/10.1038/376053a0.10.1038/376053a0Search in Google Scholar

Love, L., and Amstutz, G. (1969) Framboidal pyrite in two andesites. Neues Jahrbuch für Mineralogie Monatshefte, 3, 97–108.Search in Google Scholar

Lu, M., Zhu, M., Zhang, J., Shields-Zhou, G., Li, G., Zhao, F., Zhao, X., and Zhao, M. (2013) The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Research, 225, 86–109. https://doi.org/10.1016/j.precamres.2011.10.018.10.1016/j.precamres.2011.10.018Search in Google Scholar

Machel, H.-G. (1987) Saddle dolomite as a by-product of chemical compaction and thermochemical sulfate reduction. Geology, 15, 936–940.10.1130/0091-7613(1987)15<936:SDAABO>2.0.CO;2Search in Google Scholar

Machel, H.-G. (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings–old and new insights. Sedimentary Geology, 140, 143–175. https://doi.org/10.1016/s0037-0738(00)00176-7.10.1016/S0037-0738(00)00176-7Search in Google Scholar

Machel, H.G., and Buschkuehle, B.E. (2008) Diagenesis of the Devonian Southesk-Cairn Carbonate Complex, Alberta, Canada: marine cementation, burial dolomitization, thermochemical sulfate reduction, anhydritization, and squeegee fluid flow. Journal of Sedimentary Research, 78, 366–389. https://doi.org/10.2110/jsr.2008.037.10.2110/jsr.2008.037Search in Google Scholar

Machel, H.G., Krouse, H.R., and Sassen, R. (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 10, 373–389. https://doi.org/10.1016/0883-2927(95)00008-8.10.1016/0883-2927(95)00008-8Search in Google Scholar

Machel, H.G., Riciputi, L.R., and Cole, D.R. (1997) Ion microprobe investigation of diagenetic carbonates and sulfides in the Devonian Nisku Formation, Alberta, Canada. In I.P. Montañez, J.M. Gregg, and K.L. Shelton, Eds., Basin-Wide Diagenetic Patterns: Integrated Petrologic, Geochemical and Hydrologic Considerations, SEPM Special Publication 57. Society for Sedimentary Geology.10.2110/pec.97.57.0157Search in Google Scholar

Marin-Carbonne, J., Remusat, L., Sforna, M.C., Thomazo, C., Cartigny, P., and Philippot, P. (2018) Sulfur isotope’s signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction. Geobiology, 16, 121–138. https://doi.org/10.1111/gbi.1227510.1111/gbi.12275Search in Google Scholar PubMed

Marini, L., Moretti, R., and Accornero, M. (2011) Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas. Reviews in Mineralogy and Geochemistry, 73, 423–492.10.2138/rmg.2011.73.14Search in Google Scholar

McFadden, K.A., Huang, J., Chu, X., Jiang, G., Kaufman, A.J., Zhou, C., Yuan, X., and Xiao, S. (2008) Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 105, 3197–3202. https://doi.org/10.1073/pnas.0708336105.10.1073/pnas.0708336105Search in Google Scholar PubMed PubMed Central

McKibben, M.A., and Riciputi, L.R. (1998) Sulfur isotopes by ion microprobe. In M.A. McKibben, W.C. Shanks III, and W.I. Ridley, Eds., Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, vol. 7, p. 121–139. Society of Economic Geologists, Littleton, Colorado.10.5382/Rev.07.06Search in Google Scholar

McLoughlin, N., Grosch, E.G., Kilburn, M.R., and Wacey, D. (2012) Sulfur isotope evidence for a Paleoarchean subseafloor biosphere, Barberton, South Africa. Geology, 40, 1031–1034. https://doi.org/10.1130/g33313.1.10.1130/G33313.1Search in Google Scholar

Meyer, N.R., Zerkle, A.L., and Fike, D.A. (2017) Sulphur cycling in a Neoarchaean microbial mat. Geobiology, 15, 353–365. https://doi.org/10.1111/gbi.12227.10.1111/gbi.12227Search in Google Scholar PubMed PubMed Central

Narbonne, G.M., Xiao, S., Shields, G.A., and Gehling, J.G. (2012) The Ediacaran Period. In F.M. Gradstein, J.G. Ogg, M.D. Schmitz, and G.M. Ogg, Eds., The Geologic Time Scale, p. 413–435. Elsevier.10.1016/B978-0-444-59425-9.00018-4Search in Google Scholar

Och, L.M., and Shields-Zhou, G.A. (2012) The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Science Reviews, 110, 26–57. https://doi.org/10.1016/j.earscirev.2011.09.004.10.1016/j.earscirev.2011.09.004Search in Google Scholar

Oduro, H., Harms, B., Sintim, H.O., Kaufman, A.J., Cody, G., and Farquhar, J. (2011) Evidence of magnetic isotope effects during thermochemical sulfate reduction. Proceedings of the National Academy of Sciences, 108, 17635–17638. https://doi.org/10.1073/pnas.1108112108.10.1073/pnas.1108112108Search in Google Scholar

Ohfuji, H., and Rickard, D. (2005) Experimental syntheses of framboids–a review. Earth-Science Reviews, 71, 147–170. https://doi.org/10.1016/j.earscirev.2005.02.001.10.1016/j.earscirev.2005.02.001Search in Google Scholar

Ohmoto, H. (1986) Stable isotope geochemistry of ore deposits. Reviews in Mineralogy, 16, 491–559.Search in Google Scholar

Ohmoto, H., and Goldhaber, M.B. (1997) Sulfur and carbon isotopes. In H.L. Barnes, Ed., Geochemistry of Hydrothermal Ore Deposits, 3rd ed., p. 517–611. Wiley.Search in Google Scholar

Ohmoto, H., and Lasaga, A.C. (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochimica et Cosmochimica Acta, 46, 1727–1745. https://doi.org/10.1016/0016-7037(82)90113-2.10.1016/0016-7037(82)90113-2Search in Google Scholar

Ohmoto, H., Watanabe, Y., Lasaga, A.C., Naraoka, H., Johnson, I., Brainard, J., and Chorney, A. (2014) Oxygen, iron, and sulfur geochemical cycles on early Earth: Paradigms and contradictions. Geological Society of America Special Papers, 504, 55–95.10.1130/2014.2504(09)Search in Google Scholar

Olanipekun, B.J., and Azmy, K. (2018) In situ geochemical characterization of pyrite crystals in burial dolomites of St. George Group carbonates. Canadian Journal of Earth Sciences, in press. https://doi.org/10.1139/cjes-2016-0152.10.1139/cjes-2016-0152Search in Google Scholar

Orr, W.L. (1974) Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation—Study of Big Horn Basin paleozoic oils. AAPG Bulletin, 58, 2295–2318.Search in Google Scholar

Orr, W.L. (1977) Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. In R. Campos, and J. Goni, Eds., Advances in Organic Geochemistry, Proceedings, 1975, 50, 571–597. Pergamon.Search in Google Scholar

Ostwald, J., and England, B.M. (1979) The relationship between euhedral and framboidal pyrite in base-metal sulphide ores. Mineralogical Magazine, 43, 297–300.10.1180/minmag.1979.043.326.13Search in Google Scholar

Pan, W., Zhuo, X., Chen, X., Yang, S., and Zhao, S. (2016) Geochemical characteristics of manganese bearing rock series in black shale basins of Northest Guizhou, China. Acta Sedimentologica Sinica, 34, 868–880 (in Chinese with English abstract). https://doi.org/10T4027/j.cnki.cjxb.2016.05.006.Search in Google Scholar

Parnell, J., and Boyce, A.J. (2017) Microbial sulphate reduction during Neoproterozoic glaciation, Port Askaig Formation, UK. Journal of the Geological Society, 174, 850–854. https://doi.org/10.1144/jgs2016-147.10.1144/jgs2016-147Search in Google Scholar

Pasquier, V., Sansjofre, P., Rabineau, M., Revillon, S., Houghton, J., and Fike, D.A. (2017) Pyrite sulfur isotopes reveal glacial-interglacial environmental changes. Proceedings of the National Academy of Sciences, 114, 5941–5945. https://doi.org/10.1073/pnas.1618245114.10.1073/pnas.1618245114Search in Google Scholar PubMed PubMed Central

Paytan, A., and Gray, E.T. (2012) Sulfur isotope stratigraphy. In F.M. Gradstein, J.G. Ogg, M.D. Schmitz, and G.M. Ogg, Eds., The Geologic Time Scale, chapter 9, p. 167–180. Elsevier.10.1016/B978-0-444-59425-9.00009-3Search in Google Scholar

Peevler, J., Fayek, M., Misra, K.C., and Riciputi, L.R. (2003) Sulfur isotope microanalysis of sphalerite by SIMS: constraints on the genesis of Mississippi valley-type mineralization, from the Mascot-Jefferson City district, East Tennessee. Journal of Geochemical Exploration, 80, 277–296. https://doi.org/10.1016/s0375-6742(03)00195-x.10.1016/S0375-6742(03)00195-XSearch in Google Scholar

Peng, X., Guo, Z., Chen, S., Sun, Z., Xu, H., Ta, K., Zhang, J., Zhang, L., Li, J., and Du, M. (2017) Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply. Geochimica et Cosmochimica Acta, 205, 1–13. https://doi.org/10.1016/jgca.2017.02.010.10.1016/j.gca.2017.02.010Search in Google Scholar

Peterson, K.J., Lyons, J.B., Nowak, K.S., Takacs, C.M., Wargo, M.J., and McPeek, M.A. (2004) Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences, 101, 6536–6541. https://doi.org/10.1073/pnas.0401670101.10.1073/pnas.0401670101Search in Google Scholar

Popa, R., Kinkle, B.K., and Badescu, A. (2004) Pyrite framboids as biomarkers for iron-sulfur systems. Geomicrobiology Journal, 21, 193–206. https://doi.org/10.1080/01490450490275497.10.1080/01490450490275497Search in Google Scholar

Powell, T.G., and Macqueen, R.W. (1984) Precipitation of sulfide ores and organic matter: sulfate reactions at Pine Point, Canada. Science, 224, 63–67. https://doi.org/10.1126/science.224.4644.63.10.1126/science.224.4644.63Search in Google Scholar

Qin, Y., An, Z., Wang, J., and Li, D. (2013) The discovery and geological characteristics of the super-large sized Daotuo manganese deposit in Songtao, Guizhou. Mineral Exploration, 345–355 (in Chinese with English abstract).Search in Google Scholar

Raiswell, R. (1982) Pyrite texture, isotopic composition and the availability of iron. American Journal of Science, 282, 1244–1263. https://doi.org/10.2475/ajs.282.8.1244.10.2475/ajs.282.8.1244Search in Google Scholar

Randell, R.N., and Anderson, G.M. (1996) Geology of the Polaris Zn-Pb deposit and surrounding area, Canadian Arctic Archipelago. In D.F. Sangster, Ed., Carbonate-Hosted Lead-Zinc Deposits, vol. 4, p. 307–319. 75th Anniversary, Society of Economic Geology, Special Publication.10.5382/SP.04.22Search in Google Scholar

Riciputi, L.R., Cole, D.R., and Machel, H.G. (1996) Sulfide formation in reservoir carbonates of the Devonian Nisku Formation, Alberta, Canada: An ion microprobe study. Geochimica et Cosmochimica Acta, 60, 325–336. https://doi.org/10.1016/0016-7037(96)83133-4.10.1016/0016-7037(96)83133-4Search in Google Scholar

Ries, J.B., Fike, D.A., Pratt, L.M., Lyons, T.W., and Grotzinger, J.P. (2009) superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life. Geology, 37, 743–746. https://doi.org/10.1130/g25775a.1.10.1130/G25775A.1Search in Google Scholar

Rooney, A.D., Strauss, J.V., Brandon, A.D., and Macdonald, F.A. (2015) A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations. Geology, 43, 459–462. https://doi.org/10.1130/g36511.1.10.1130/G36511.1Search in Google Scholar

Runnegar, B. (1982) A molecular-clock date for the origin of the animal phyla. Lethaia, 15, 199–205. https://doi.org/10.1111/j.1502-3931.1982.tb00645.x.10.1111/j.1502-3931.1982.tb00645.xSearch in Google Scholar

Rust, G.W. (1935) Colloidal primary copper ores at Cornwall mines, southeastern Missouri. The Journal of Geology, 43, 398–426. https://doi.org/10.1086/624318.10.1086/624318Search in Google Scholar

Rye, R.O., and Ohmoto, H. (1974) Sulfur and carbon isotopes and ore genesis: A review. Economic Geology, 69, 826–842. https://doi.org/10.2113/gsecongeo.69.6.826.10.2113/gsecongeo.69.6.826Search in Google Scholar

Schallreuter, R. (1984) Framboidal pyrite in deep-sea sediments. In W.W. Hay and J.-C. Sibuet, Eds., Initial Reports of the Deep Sea Drilling Project, 75, p. 875–891. U.S. Government Printing Office.10.2973/dsdp.proc.75.124.1984Search in Google Scholar

Scheller, E.L., Dickson, A.J., Canfield, D.E., Korte, C., Kristiansen, K.K., and Dahl, T.W. (2018) Ocean redox conditions between the Snowballs—geochemical constraints from Arena Formation, East Greenland. Precambrian Research, in press. https://doi.org/10.1016/j.precamres.2017.12.009.10.1016/j.precamres.2017.12.009Search in Google Scholar

Schieber, J. (2011) Iron sulfide formation. In J. Reitner and V. Thiel, Eds., Encyclopedia of Geobiology, p. 486–502. Springer.10.1007/978-1-4020-9212-1_118Search in Google Scholar

Schmitz, M.D. (2012) Radiometric ages used in GTS2012. In F.M. Gradstein, J.G. Ogg, M.D. Schmitt and G.M. Ogg, Eds., The Geologic Time Scale, p. 1045–1082. Elsevier.10.1016/B978-0-444-59425-9.15002-4Search in Google Scholar

Scott, R.J., Meffre, S., Woodhead, J., Gilbert, S.E., Berry, R.F., and Emsbo, P. (2009) Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Economic Geology, 104, 1143–1168. https://doi.org/10.2113/gsecongeo.104.8.1143.10.2113/gsecongeo.104.8.1143Search in Google Scholar

Seal, R.R. (2006) Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61, 633–677.10.2138/rmg.2006.61.12Search in Google Scholar

Shen, Y., Buick, R., and Canfield, D.E. (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77–81. https://doi.org/10.1038/35065071.10.1038/35065071Search in Google Scholar PubMed

Shields-Zhou, G., and Och, L. (2011) The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences. GSA Today, 21,4–11. https://doi.org/10.1130/gsatg102a.1.10.1130/GSATG102A.1Search in Google Scholar

Shields-Zhou, G.A., Hill, A.C., and Macgabhann, B.A. (2012) The Cryogenian Period. In F.M. Gradstein, J.G. Ogg, M.D. Schmitz, and G.M. Ogg, Eds., The Geologic Time Scale, p. 393–411. Elsevier.10.1016/B978-0-444-59425-9.00017-2Search in Google Scholar

Siegmund, H., and Erdtmann, B.-D. (1994) Facies and diagenesis of some Upper Proterozoic dolomites of South China. Facies, 31, 255–263. https://doi.org/10.1007/bf02536942.10.1007/BF02536942Search in Google Scholar

Sim, M.S., Bosak, T., and Ono, S. (2011a) Large sulfur isotope fractionation does not require disproportionation. Science, 333, 74–77. https://doi.org/10.1126/science.1205103.10.1126/science.1205103Search in Google Scholar

Sim, M.S., Ono, S., Donovan, K., Templer, S.P., and Bosak, T. (2011b) Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. Geochimica et Cosmochimica Acta, 75, 4244–4259. https://doi.org/10.1016/j.gca.2011.05.021.10.1016/j.gca.2011.05.021Search in Google Scholar

Sim, M.S., Ono, S., and Bosak, T. (2012) Effects of iron and nitrogen limitation on sulfur isotope fractionation during microbial sulfate reduction. Applied and Environmental Microbiology, 78, 8368–8376. https://doi.org/10.1128/AEM.01842-12.10.1128/AEM.01842-12Search in Google Scholar

Song, G., Wang, X., Shi, X., and Jiang, G. (2017) New U-Pb age constraints on the upper Banxi Group and synchrony of the Sturtian glaciation in South China. Geoscience Frontiers, 8, 1161–1173. https://doi.org/10.1016/j.gsf.2016.11.012.10.1016/j.gsf.2016.11.012Search in Google Scholar

Soœnicka, M., and Lüders, V. (2018) super-deep, TSR-controlled Phanerozoic MVT type Zn-Pb deposits hosted by Zechstein reservoir carbonate, Lower Saxony Basin, Germany. Chemical Geology, in press. https://doi.org/10.1016/j.chemgeo.2018.04.025.10.1016/j.chemgeo.2018.04.025Search in Google Scholar

Sunagawa, I., Endo, Y., and Nakai, N. (1971) Hydrothermal synthesis of framboidal pyrite. Society of Mining Geologists of Japan, Special Issue, Proceedings of the IMA-IAGOD meetings ’70, Joint Symposium, 1, 10–14.Search in Google Scholar

Tang, S. (1990) Isotope geological study of manganese deposit in Minle area, Hunan Province. Acta Sedimentologica Sinica, 8, 77–84 (in Chinese with English abstract).Search in Google Scholar

Tang, S., and Liu, T. (1999) Origin of the early Sinian Minle manganese deposit, Hunan Province, China. Ore Geology Reviews, 15, 71–78. https://doi.org/10.1016/S0169-1368(99)00015-3.10.1016/S0169-1368(99)00015-3Search in Google Scholar

Tompkins, L.A., Rayner, M.J., Groves, D.I., and Roche, M.T. (1994) Evaporites: In situ sulfur source for rhythmically banded ore in the Cadjebut Mississippi Valley-type Zn-Pb deposit, Western Australia. Economic Geology, 89, 467–492. https://doi.org/10.2113/gsecongeo.89.3.467.10.2113/gsecongeo.89.3.467Search in Google Scholar

Ushikubo, T., Williford, K.H., Farquhar, J., Johnston, D.T., Van Kranendonk, M.J., and Valley, J.W. (2014) Development of in situ sulfur four-isotope analysis with multiple Faraday cup detectors by SIMS and application to pyrite grains in a Paleoproterozoic glaciogenic sandstone. Chemical Geology, 383, 86–99. https://doi.org/10.1016/j.chemgeo.2014.06.006.10.1016/j.chemgeo.2014.06.006Search in Google Scholar

Valley, J.W., and Kita, N.T. (2009) In situ oxygen isotope geochemistry by ion microprobe. In M. Fayek, Ed., Secondary Ion Mass Spectrometry in the Earth Sciences—Gleaning the Big Picture from a Small Spot, 41, p. 19–63. Mineralogical Association of Canada Short Course 41.Search in Google Scholar

Wacey, D., McLoughlin, N., Whitehouse, M.J., and Kilburn, M.R. (2010) Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. Geology, 38, 1115–1118. https://doi.org/10.1130/g31329.1.10.1130/G31329.1Search in Google Scholar

Wacey, D., Kilburn, M.R., Saunders, M., Cliff, J.B., Kong, C., Liu, A.G., Matthews, J.J., and Brasier, M.D. (2015) Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping. Geology, 43, 27–30. https://doi.org/10.1130/g36048.1.10.1130/G36048.1Search in Google Scholar

Walter, M.R., Veevers, J.J., Calver, C.R., Gorjan, P., and Hill, A.C. (2000) Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Research, 100, 371–433. https://doi.org/10.1016/s0301-9268(99)00082-0.10.1016/S0301-9268(99)00082-0Search in Google Scholar

Wang, J., and Li, Z.-X. (2003) History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 122, 141–158. https://doi.org/10.1016/s0301-9268(02)00209-7.10.1016/S0301-9268(02)00209-7Search in Google Scholar

Wang, Y., Wang, L., and Zhu, S. (1985) The Stratigraphy, Sedimentary Environment and Manganese-Forming Process of the Datangpo Formation in Eastern Guizhou, 92 p. People’s Publishing House of Guizhou, Guiyang (in Chinese).Search in Google Scholar

Wang, L., Liu, C., and Zhang, H. (2013) Tectonic and sedimentary settings of evaporites in the Dengying Formation, South China Block: Implications for the potential of potash formation. Acta Geoscientica Sinica, 34, 585–593 (in Chinese with English abstract).Search in Google Scholar

Wang, P., Zhou, Q., Du, Y., Yu, W., Xu, Y., Qi, L., and Yuan, L. (2016) Characteristics of pyrite sulfur isotope of Mn deposit from datangpo formation in Songtao area, East Guizhou Province and its geological significance. Earth Science—Journal of China University of Geosciences, 41, 2031–2040 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.14210.3799/dqkx.2016.142Search in Google Scholar

Wang, P., Du, Y., Algeo, T.J., Yu, W., Zhou, Q., Xu, Y., and Yuan, L. (2017) Post-sturtian sulfur isotope anomalies in the Nanhua Basin, South China related to upward H2S Migration. Geological Society of America Abstracts with Programs, vol. 49, no. 6.10.1130/abs/2017AM-297093Search in Google Scholar

Watanabe, Y., Farquhar, J., and Ohmoto, H. (2009) Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science, 324, 370–373. https://doi.org/10.1126/science.1169289.10.1126/science.1169289Search in Google Scholar

Wilkin, R., and Barnes, H. (1997) Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61, 323–339. https://doi.org/10.1016/s0016-7037(96)00320-1.10.1016/S0016-7037(96)00320-1Search in Google Scholar

Wilkin, R.T., Barnes, H.L., and Brantley, S.L. (1996) The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60, 3897–3912. https://doi.org/10.1016/0016-7037(96)00209-8.10.1016/0016-7037(96)00209-8Search in Google Scholar

Williford, K.H., Van Kranendonk, M.J., Ushikubo, T., Kozdon, R., and Valley, J.W. (2011) Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: In situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochimica et Cosmochimica Acta, 75, 5686–5705. https://doi.org/10.1016/j.gca.2011.07.010.10.1016/j.gca.2011.07.010Search in Google Scholar

Williford, K.H., Ushikubo, T., Lepot, K., Kitajima, K., Hallmann, C., Spicuzza, M.J., Kozdon, R., Eigenbrode, J.L., Summons, R.E., and Valley, J.W. (2016) Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates. Geobiology, 14, 105–128. https://doi.org/10.1111/gbi.12163.10.1111/gbi.12163Search in Google Scholar

Wing, B.A., and Halevy, I. (2014) Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration. Proceedings of the National Academy of Sciences, 111, 18116–18125. https://doi.olg/10.1073/pnas.140750211110.1073/pnas.1407502111Search in Google Scholar

Worden, R.H., and Smalley, P.C. (1996) H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi. Chemical Geology, 133, 157–171. https://doi.org/10.1016/S0009-2541(96)00074-5.10.1016/S0009-2541(96)00074-5Search in Google Scholar

Worden, R.H., Smalley, P.C., and Oxtoby, N.H. (1995) Gas souring by thermochemical sulfate reduction at 140 °C. AAPG Bulletin, 79, 854–863.Search in Google Scholar

Worden, R.H., Smalley, P.C., and Cross, M.M. (2000) The influence of rock fabric and mineralogy on thermochemical sulfate reduction: Khuff Formation, Abu Dhabi. Journal of Sedimentary Research, 70, 1210–1221. https://doi.org/10.1306/110499701210.10.1306/110499701210Search in Google Scholar

Wortmann, U.G., Bernasconi, S.M., and Böttcher, M.E. (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology, 29, 647–650.10.1130/0091-7613(2001)029<0647:HDBIES>2.0.CO;2Search in Google Scholar

Wu, C., Cheng, Y., Zhang, Z., Xiao, J., Fu, Y., Shao, S., Zheng, C., and Yao, J. (2015a) Geological implications of ultra-high δ34S values of pyrite in manganese deposits of Nanhua Period in eastern Guizhou and adjacent areas, China. Geochimica, 44, 213–224 (in Chinese with English abstract).Search in Google Scholar

Wu, N., Farquhar, J., and Fike, D.A. (2015b) Ediacaran sulfur cycle: Insights from sulfur isotope measurements (Δ33S and δ34S) on paired sulfate–pyrite in the Huqf supergroup of Oman. Geochimica et Cosmochimica Acta, 164, 352–364. https://doi.org/10.1016/j.gca.2015.05.031.10.1016/j.gca.2015.05.031Search in Google Scholar

Wu, C., Zhang, Z., Xiao, J., Fu, Y., Shao, S., Zheng, C., Yao, J., and Xiao, C. (2016) Nanhuan manganese deposits within restricted basins of the southeastern Yangtze Platform, China: Constraints from geological and geochemical evidence. Ore Geology Reviews, 75, 76–99. https://doi.org/10.1016/j.oregeorev.2015.12.003.10.1016/j.oregeorev.2015.12.003Search in Google Scholar

Xi, X. (1987) Characteristic and Environments of Sinian Evaporite in Southern Sichuan, China. In T.M. Peryt, Ed., Lecture Notes in Earth Sciences: Evaporite Basins, 23–29. Springer-Verlag Berlin Heidelberg, Berlin.Search in Google Scholar

Xiao, S. (2014) Oxygen and early animal evolution. In H.D. Holland and K.K. Turekian, Eds., Treatise on Geochemistry (2nd ed.), vol. 6, The Atmosphere—History, p. 231–250. Elsevier.10.1016/B978-0-08-095975-7.01310-3Search in Google Scholar

Xiao, S., Zhou, C., and Zhu, M. (2014) International Symposium and Field Workshop on Ediacaran and Cryogenian Stratigraphy. Episodes, 37, 218–221.10.18814/epiiugs/2014/v37i3/007Search in Google Scholar

Xiao, S., Narbonne, G.M., Zhou, C., Laflamme, M., Grazhdankin, D.V., Moczydłowska-Vidal, M., and Cui, H. (2016) Toward an Ediacaran time scale: Problems, protocols, and prospects. Episodes, 39, 540–555. https://doi.org/10.18814/epiiugs/2016/v39i4/103886.10.18814/epiiugs/2016/v39i4/103886Search in Google Scholar

Xie, Q.-L., Chen, D.-F., and Chen, X.-P. (1999) Characteristics of sedimentary organic matter in Songtao manganese deposits, Guizhou. Acta Sedimentologica Sinica, 17, 280–284 (in Chinese with English abstract).Search in Google Scholar

Xie, X.-F., Qin, Y., Wen, G.-G., and Xie, X.-Y. (2014) Relation between Datangpo Formation and manganese mineralization in Songtao manganese mining area of Tongren in Guizhou. Guizhou Geology, 31, 32–37 (in Chinese with English abstract).Search in Google Scholar

Xu, X., Huang, H., and Liu, B. (1990) Manganese deposits of the Proterozoic Datangpo Formation, South China: genesis and palaeogeography. In J. Parnell, L. Ye, and C. Chen, Eds., Sediment-Hosted Mineral Deposits, 11, p. 39–50. The International Association of Sedimcntologists, Blackwell, Oxford, U.K.10.1002/9781444303872.ch4Search in Google Scholar

Yang, R., Ouyang, Z., Zhu, L., Wang, S., Jiang, L., Zhang, W., and Gao, H. (2002) A new understanding of manganese carbonate deposits in early Sinian Datangpo Stage. Acta Mineralogica Sinica, 22, 329–334 (in Chinese with English abstract).Search in Google Scholar

Yin, C., Wang, Y., Tang, F., Wan, Y., Wang, Z., Gao, L., Xing, Y., and Liu, P. (2006) SHRIMP II U-Pb zircon date from the Nanhuan Datangpo Formation in Songtao County, Guizhou Province. Acta Geologica Sinica, 80, 273–278 (in Chinese with English abstract).Search in Google Scholar

Yu, W., Algeo, T.J., Du, Y., Zhou, Q., Wang, P., Xu, Y., Yuan, L., and Pan, W. (2017) Newly discovered Sturtian cap carbonate in the Nanhua Basin, South China. Precambrian Research, 293, 112–130. https://doi.org/10.1016/j.precamres.2017.03.011.10.1016/j.precamres.2017.03.011Search in Google Scholar

Yuan, Y.-S., Ma, Y.-S., Hu, S.-B., Guo, T.-L., and Fu, X.-Y. (2006) Present-day geothermal characteristics in South China. Chinese Journal of Geophysics, 49, 1005–1014. https://doi.org/10.1002/cjg2.922.10.1002/cjg2.922Search in Google Scholar

Zhang, F. (2014) The formation mechanism of Datangpo Manganese Ore Deposits during Nanhua Period in South China and the paleo-redox conditions of Nanhua Marine Basin. Master’s thesis (in Chinese with English abstract), Chinese Academy of Geological Sciences, Beijing, 121 p.Search in Google Scholar

Zhang, S., Jiang, G., and Han, Y. (2008) The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 20, 289–294. https://doi.org/10.1111/j.1365-3121.2008.00819.x.10.1111/j.1365-3121.2008.00819.xSearch in Google Scholar

Zhang, F., Zhu, X., Gao, Z., Cheng, L., Peng, Q., and Yang, D. (2013) Implications of the precipitation mode of manganese and ultra-high δ34S values of pyrite in Mn-carbonate of Xixibao Mn ore deposit in Northeastern Guizhou Province. Geological Review, 59, 274–286 (in Chinese with English abstract).Search in Google Scholar

Zhang, M., Konishi, H., Xu, H., Sun, X., Lu, H., Wu, D., and Wu, N. (2014) Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea. Journal of Asian Earth Sciences, 92, 293–301. https://doi.org/10.1016/j.jseaes.2014.05.004.10.1016/j.jseaes.2014.05.004Search in Google Scholar

Zhou, C., Tucker, R., Xiao, S., Peng, Z., Yuan, X., and Chen, Z. (2004) New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32, 437–440. https://doi.org/10.1130/g20286.1.10.1130/G20286.1Search in Google Scholar

Zhou, Q., Du, Y.-S., Wang, J.-S., and Peng, J.-Q. (2007) Characteristics and significance of the cold seep carbonates from the Datangpo Formation of the Nanhua series in the northeast Guizhou. Earth Science—Journal of China University of Geosciences, 32, 339–346 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2007.03.006.Search in Google Scholar

Zhou, Q., Du, Y., and Qin, Y. (2013) Ancient natural gas seepage sedimentary-type manganese metallogenic system and ore-forming model: A case study of Datangpo type manganese deposits formed in rift basin of Nanhua Period along Guizhou-Hunan-Chongqing border area. Mineral Deposits, 32, 457–466 (in Chinese with English abstract). https://doi.org/10.16111/j.0258-7106.2013.03.001.Search in Google Scholar

Zhu, G., Zhang, S., Liang, Y., and Li, Q. (2007a) The genesis of H2S in the Weiyuan Gas Field, Sichuan Basin and its evidence. Chinese Science Bulletin, 52, 1394–1404. https://doi.org/10.1007/s11434-007-0185-1.10.1007/s11434-007-0185-1Search in Google Scholar

Zhu, G., Zhao, W., Zhang, S., Liang, Y., and Wang, Z. (2007b) Discussion of gas enrichment mechanism and natural gas origin in marine sedimentary basin, China. Chinese Science Bulletin, 52, 62–76. https://doi.org/10.1007/s11434-007-6016-6.10.1007/s11434-007-6016-6Search in Google Scholar

Zhu, X., Peng, Q., Zhang, R., An, Z., Zhang, F., Yan, B., Li, J., Gao, Z., Tan, Y., and Pan, W. (2013) Geological and geochemical characteristics of the Daotuo super-large manganese ore deposit at Songtao County in Guizhou Province. Acta Geologica Sinica, 87, 1335–1348 (in Chinese with English abstract).Search in Google Scholar

Zhu, G., Wang, T., Xie, Z., Xie, B., and Liu, K. (2015) Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China: Implications for gas exploration in old cratonic basins. Precambrian Research, 262, 45–66. https://doi.org/10.1016/j.precamres.2015.02.023.10.1016/j.precamres.2015.02.023Search in Google Scholar

Wu, C., Zhang, Z., Xiao, J., Fu, Y., Shao, S., Zheng, C., Yao, J., Xiao, C., 2016. Nanhuan manganese deposits within restricted basins of the southeastern Yangtze Platform, China: Constraints from geological and geochemical evidence. Ore Geology Reviews, 75, 76–99. http://doi.org/10.1016/j.oregeorev.2015.12.003.10.1016/j.oregeorev.2015.12.003Search in Google Scholar

Received: 2018-01-31
Accepted: 2018-05-16
Published Online: 2018-08-28
Published in Print: 2018-09-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Highlights and Breakthroughs
  2. The tales of disequilibrium and equilibrium crystallization of rare metal minerals: Data from new experiments
  3. Pressure, temperature, water content, and oxygen fugacity dependence of the Mg grain-boundary diffusion coefficient in forsterite
  4. Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS
  5. The effect of disequilibrium crystallization on Nb-Ta fractionation in pegmatites: Constraints from crystallization experiments of tantalite-tapiolite
  6. Titanite major and trace element compositions as petrogenetic and metallogenic indicators of Mo ore deposits: Examples from four granite plutons in the southern Yidun arc, SW China
  7. Kuliginite, a new hydroxychloride mineral from the Udachnaya kimberlite pipe, Yakutia: Implications for low-temperature hydrothermal alteration of the kimberlites
  8. Electron microprobe technique for the determination of iron oxidation state in silicate glasses
  9. Experimental investigation of F and Cl partitioning between apatite and Fe-rich basaltic melt at 0 GPa and 950–1050 °C: Evidence for steric controls on apatite-melt exchange equilibria in OH-poor apatite
  10. Carbonic acid monohydrate
  11. High spatial resolution analysis of the iron oxidation state in silicate glasses using the electron probe
  12. Disturbance of the Sm-Nd isotopic system by metasomatic alteration: A case study of fluorapatite from the Sin Quyen Cu-LREE-Au deposit, Vietnam
  13. Segerstromite, Ca3(As5+O4)2[As3+(OH)3]2, the first mineral containing As3+(OH)3, the arsenite molecule, from the Cobriza mine in the Atacama Region, Chile
  14. Vestaite, (Ti4+Fe2+) Ti34+ O9, a new mineral in the shocked eucrite Northwest Africa 8003
  15. Decomposition boundary from high-pressure clinoenstatite to wadsleyite + stishovite in MgSiO3
  16. Letter
  17. Making tissintite: Mimicking meteorites in the multi-anvil
  18. Book Review
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2018-6489/html
Scroll to top button