Home Physical Sciences Kuliginite, a new hydroxychloride mineral from the Udachnaya kimberlite pipe, Yakutia: Implications for low-temperature hydrothermal alteration of the kimberlites
Article
Licensed
Unlicensed Requires Authentication

Kuliginite, a new hydroxychloride mineral from the Udachnaya kimberlite pipe, Yakutia: Implications for low-temperature hydrothermal alteration of the kimberlites

  • Denis S. Mikhailenko EMAIL logo , Andrey V. Korsakov , Sergey V. Rashchenko , Yurii V. Seryotkin , Dmitriy I. Belakovskiy and Alexander V. Golovin
Published/Copyright: August 28, 2018
Become an author with De Gruyter Brill

Abstract

Kuliginite is a new iron-magnesium hydroxychloride mineral with the ideal formula Fe3Mg(OH)6Cl2 from the Udachnaya East kimberlite, Yakutia, Russia. It occurs as green prismatic-bipyramidal crystals (0.2–0.5 mm) and fills cavities and veins in several units of kimberlites together with iowaite, gypsum, calcite, halite, barite, and celestine. It is trigonal, with R3̅ space group. Kuliginite has imperfect cleavage on {101̅1}. The spinel-like crystal structure of kuliginite is also typical for several copper minerals of the atacamite group with common formula Cu3M(OH)6Cl2; kuliginite can be regarded as a Fe2+ analog of tondiite [Cu3Mg(OH)6Cl2.

The occurrence of the kuliginite + iowaite + gypsum assemblage has implications for the interpretation of low-temperature (below 100°C) hydrothermal processes and alteration of kimberlite by hydrothermal fluids/brines, as well as for transport of metals in Cl-bearing solutions. This secondary hydrothermal mineral assemblage formed much later than the kimberlite groundmass minerals. Kuliginite contains inclusions of iowaite indicating their simultaneous crystallization.

Acknowledgments

We greatly appreciate the assistance of our colleagues A.V. Vishnevsky (photographs of minerals), E.N. Nigmatulina (EPMA), and I.V. Pekov (optical properties). The study was supported by state assignment project 0330-2016-0006. Comments by T. Alifirova, constructive reviews by Uwe Kolitsch and an anonymous reviewer, and the associate editor, G. Diego Gatta, helped to improve many aspects of the paper.

References cited

Alekseev, S.V. (2009) Permafrost-Groundwater Systems of the Yakutian Diamond Province. Akademicheskoe Izdatelstvo “Geo”, Novosibirsk.Search in Google Scholar

Alexeev, S.V., Alexeeva, L.P., Borisov, V.N., Shouakar-Stash, O., Frape, S.K., Chabaux, F., and Kononov, A.M. (2007) Isotopic composition (H, O, Cl, Sr) of ground brines of the Siberian Platform. Russian Geology and Geophysics, 48, 225–236.10.1016/j.rgg.2007.02.007Search in Google Scholar

Aullon, G., Bellamy, D., Orpen, A.G., Brammer, L., Bruton, F., and Eric, A. (1998) Metal-bound chlorine often accepts hydrogen bonds. Chemical Communications. Royal Society of Chemistry, 6, 653–654.Search in Google Scholar

Braithwaite, R.S.W., Dunn, P.J., Pritchard, R.G., and Parr, W.H. (1994) Iowaite, a re-investigation. Mineralogical Magazine, 58, 77–86.10.1180/minmag.1994.058.390.08Search in Google Scholar

Braithwaite, R., Mereiter, K., Paar, W., and Clark, A. (2011) Herbertsmithite, Cu3Zn (OH)6Cl2, a new species, and the definition of paratacamite. Mineralogical Magazine, 68, 527–539.10.1180/0026461046830204Search in Google Scholar

Brakhfogel, F.F. (1984) Geological aspects of kimberlite magmatism in the northeastern Siberian platform. Siberian Branch of Academy of Sciences of USSR, 128, 130–135.Search in Google Scholar

Brese, N.E., and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–19710.1107/S0108768190011041Search in Google Scholar

Cawthorn, R.G., Luvhimbe, C., and Slabbert, M. (2009) Suspected presence of hibbingite in olivine pyroxenite adjacent to the UG2 chromitite, Bushveld Complex, South Africa. Canadian Mineralogist, 47, 1075–1085.10.3749/canmin.47.5.1075Search in Google Scholar

Clissold, M.E., Leverett, P., Williams, P.A., Hibbs, D.E., and Nickel, E.H. (2007) The structure of gillardite, the Ni-analogue of herbertsmithite, from Widgiemooltha, Western Australia. Canadian Mineralogist, 45, 317–320.10.2113/gscanmin.45.2.317Search in Google Scholar

Crichton, W.A., and Müller, H. (2017) Centennialite, CaCu3(OH)6Cl2⋅nH2O, n = 0.7, a new kapellasite-like species, and a reassessment of calumetite. Mineralogical Magazine, 81, 1105–1124.10.1180/minmag.2016.080.157Search in Google Scholar

Davis, G.L., Sobolev, N.V., and Kharkiv, A.D. (1980) New data on the age of Yakutian kimberlites obtained by uranium-lead study of zircons. Doklady Akademii Nauk SSSR, 254, 175–179, (in Russian).Search in Google Scholar

ďEyrames, E., Thomassot, E., Kitayama, Y., Golovin, A., Korsakov, A., and Ionov, D. (2017) A mantle origin for sulfates in the unusual salty Udachnaya—East kimberlite from sulfur abundances, speciation and their relationship with groundmass carbonates. Bulletin de la Société géologique de France, 188, 1–8.Search in Google Scholar

Drozdov, A.V., Egorov, K.N., Gotovtsev, S.P., and Klimovsky, I.V. (1989) Hydrogeological structure and hydrochemical zonation of the Udachnaya kimberlite pipe. In Combined Permafrost and Hydrogeological Studies, p. 146–155. Institute of Permafrost Siberian Branch of Academy of Sciences, Yakutsk.Search in Google Scholar

Foord, E.E., and Mills, B.A. (1978) Biaxiality in ‘isometric’ and ‘dimetric’ crystals. American Mineralogist, 63, 316–325.Search in Google Scholar

Frost, R., Bouzaid, J., Musumeci, A., Kloprogge, J., and Martens, W. (2006) Thermal decomposition of the synthetic hydrotalcite iowaite. Journal of Thermal Analysis and Calorimetry, 86, 437–441.10.1007/s10973-005-7290-7Search in Google Scholar

Frost, R.L., Adebajo, M.O., and Erickson, K.L. (2005) Raman spectroscopy of synthetic and natural iowaite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 613–620.10.1016/j.saa.2004.05.015Search in Google Scholar PubMed

Golovin, A.V., Sharygin, V.V., Pokhilenko, N.P., Malkovets, V.G., Kolesov, B.A., and Sobolev, N.V. (2003) Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya-East pipe, Yakutia. Doklady Earth Sciences, 388, 93–96.Search in Google Scholar

Golovin, A.V., Sharygin, V.V., and Pokhilenko, N.P. (2007) Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: Some aspects of kimberlite magma evolution during late crystallization stages. Petrology, 15, 168–183.10.1134/S086959110702004XSearch in Google Scholar

Golovin, A.V., Sharygin, I.S., and Korsakov, A.V. (2017) Origin of alkaline carbonates in kimberlites of the Siberian craton: Evidence from melt inclusions in mantle olivine of the Udachnaya-East pipe. Chemical Geology, 455, 357–375.10.1016/j.chemgeo.2016.10.036Search in Google Scholar

Hålenius, U., Hatert, F., Pasero, M., and Mills, S. (2016) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 33. New minerals and nomenclature modifications approved in 2016. Mineralogical Magazine, 80, 1135–1144.10.1180/minmag.2016.080.085Search in Google Scholar

Hamilton, W.C. (1965) Significance tests on the crystallographic R factor. Acta Crystallographica, 18, 502–510.10.1107/S0365110X65001081Search in Google Scholar

Hawthorne, F. (1985) Refinement of the crystal structure of botallackite. Mineralogical Magazine, 49, 87–91.10.1180/minmag.1985.049.350.12Search in Google Scholar

Kahr, B., and McBride, J.M. (1992) Optically anomalous crystals. Angewandte Chemie International Edition, 31, 1–26.10.1007/1-4020-5353-3Search in Google Scholar

Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, R., Danyushevsky, L.V., Thomas, R., Pokhilenko, N.P., and Sobolev, N.V. (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology, 32, 845–848.10.1130/G20821.1Search in Google Scholar

Kamenetsky, V.S., Sharygin, V.V., Kamenetsky, M.B., and Golovin, A.V. (2006) Chloride-carbonate nodules in kimberlites from the Udachnaya pipe: alternative approach to the evolution of kimberlite magmas. Geochemistry International, 44, 935–940.10.1134/S0016702906090084Search in Google Scholar

Kamenetsky, V.S., Kamenetsky, M.B., Sharygin, V.V., Faure, K., and Golovin, A.V. (2007a) Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia). Chemical Geology, 237, 384–400.10.1016/j.chemgeo.2006.07.010Search in Google Scholar

Kamenetsky, V.S., Kamenetsky, M.B., Sobolev, A.V., Golovin, A.V., Demouchy, S., Faure, K., Sharygin, V.V., and Kuzmin, D.V. (2007b) Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. Journal of Petrology, 49, 823–839.10.1093/petrology/egm033Search in Google Scholar

Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Navon, O., Nielsen, T.F., and Mernagh, T.P. (2009) How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos, 112, 334–346.10.1016/j.lithos.2009.03.032Search in Google Scholar

Kamenetsky, V.S., Kamenetsky, M.B., Golovin, A.V., Sharygin, V.V., and Maas, R. (2012) Ultrafresh salty kimberlite of the Udachnaya–East pipe (Yakutia, Russia): A petrological oddity or fortuitous discovery? Lithos, 152, 173–186.10.1016/j.lithos.2012.04.032Search in Google Scholar

Kamenetsky, V.S., Golovin, A.V., Maas, R., Giuliani, A., Kamenetsky, M.B., and Weiss, Y. (2014) Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth-Science Reviews, 139, 145–167.10.1016/j.earscirev.2014.09.004Search in Google Scholar

Kampf, A.R., Sciberras, M.J., Leverett, P., Williams, P.A., Malcherek, T., Schlüter, J., Welch, M.D., Dini, M., and Donoso, A.M. (2013a) Paratacamite-(Mg), Cu3(Mg, Cu)C12(OH)6; a new substituted basic copper chloride mineral from Camerones, Chile. Mineralogical Magazine, 77, 3113–3124.10.1180/minmag.2013.077.8.06Search in Google Scholar

Kampf, A.R., Sciberras, M.J., Williams, P.A., Dini, M., and Donoso, A. (2013b) Leverettite from the Torrecillas mine, Iquique Provence, Chile: the Co-analogue of herbertsmithite. Mineralogical Magazine, 77, 3047–3054.10.1180/minmag.2013.077.7.14Search in Google Scholar

Kharkiv, A.D., Zinchuk, N.N., and Kryuchkov, A.I. (1998) Primary Diamond Deposits of the World, 555 p. Nedra, Moscow.Search in Google Scholar

Kinny, P.D., Griffin, B.J., Heaman, L.M., Brakhfogel, F.F., and Spetsius, Z.V. (1997) SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Russian Geology and Geophysics, 38, 97–105.10.29173/ikc1860Search in Google Scholar

Kitayama, Y., Thomassot, E., Galy, A., Golovin, A., Korsakov, A., ďEyrames, E., Assayag, N., Bouden, N., and Ionov, D. (2017) Co-magmatic sulfides and sulfates in the Udachnaya-East pipe (Siberia): A record of the redox state and isotopic composition of sulfur in kimberlites and their mantle sources. Chemical Geology, 455, 315–330.10.1016/j.chemgeo.2016.10.037Search in Google Scholar

Klimchouk, A. (1996) The dissolution and conversion of gypsum and anhydrite. International Journal of Speleology, 25, 2–16.10.5038/1827-806X.25.3.2Search in Google Scholar

Kopylova, M.G., Gaudet, M., Kostrovitsky, S.I., Polozov, A.G., and Yakovlev, D.A. (2016) Origin of salts and alkali carbonates in the Udachnaya East kimberlite: Insights from petrography of kimberlite phases and their carbonate and evaporite xenoliths. Journal of Volcanology and Geothermal Research, 327, 116–134.10.1016/j.jvolgeores.2016.07.003Search in Google Scholar

Kozlov, I., and Levshov, P. (1962) Amakinite, a new mineral of the brucitepyrochroite group. American Mineralogist, 47, 1218.Search in Google Scholar

Krause, W., Bernhardt, H.-J., Braithwaite, R.S.W., Kolitsch, U., and Pritchard, R. (2006) Kapellasite, Cu3Zn(OH)6Cl2, a new mineral from Lavrion, Greece, and its crystal structure. Mineralogical Magazine, 70, 329–340.10.1180/0026461067030336Search in Google Scholar

Libowitzky, E. (1999) Correlation of OH stretching frequencies and OH…O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047–1059.10.1007/BF03354882Search in Google Scholar

Maas, R., Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., and Sobolev, N.V. (2005) Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology, 33, 549–552.10.1130/G21257.1Search in Google Scholar

Malcherek, T., and Schlüter, J. (2009) Structures of the pseudo-trigonal polymorphs of Cu2(OH)3Cl. Acta Crystallographica, B65, 334–341.10.1107/S0108768109013901Search in Google Scholar PubMed

Malcherek, T., Bindi, L., Dini, M., Ghiara, M., Donoso, A.M., Nestola, F., Rossi, M., and Schlüter, J. (2014) Tondiite, Cu3Mg(OH)6Cl2, the Mg-analogue of herbertsmithite. Mineralogical Magazine, 78, 583–590.10.1180/minmag.2014.078.3.08Search in Google Scholar

Marshintsev, V.K., Migalkin, K.N., Nikolaev, N.S., and Barashkov, I.P. (1976) Unchanged kimberlite of Udachnaya-Vostochnaya pipe. Doklady Akademii Nauk SSSR, 231, 961–964.Search in Google Scholar

Mascal, M. (1997) A statistical analysis of halide H–A (A= OR, NR 2, N+ R 3) hydrogen bonding interactions in the solid state. Journal of the Chemical Society, Perkin Transactions, 2, 10, 1999–2001.10.1039/a701949aSearch in Google Scholar

Mernagh, T.P., Kamenetsky, V.S., and Kamenetsky, M.B. (2011) A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 80, 82–87.10.1016/j.saa.2011.01.034Search in Google Scholar PubMed

Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.10.1107/S0021889811038970Search in Google Scholar

Nishio-Hamane, D., Momma, K., Ohnishi, M., Shimobayashi, N., Miyawaki, R., Tomita, N., Okuma, R., Kampf, A., and Minakawa, T. (2017) Iyoite, MnCuCl(OH)3 and misakiite, Cu3Mn(OH)6Cl2: new members of the atacamite family from Sadamisaki Peninsula, Ehime Prefecture, Japan. Mineralogical Magazine, 81, 485–498.10.1180/minmag.2016.080.104Search in Google Scholar

Palatinus, L., and Chapuis, G. (2007) SUPERFLIP—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786–790.10.1107/S0021889807029238Search in Google Scholar

Parise, J.B., and Hyde, B.G. (1986) The structure of atacamite and its relationship to spinel. Acta Crystallographica, C42, 1277–1280.10.1107/S0108270186092570Search in Google Scholar

Petricek, V., Dusek, M., and Palatinus, L. (2014) Crystallographic computing system JANA2006: general features. Zeitschrift für Kristallographie: Crystalline Materials, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

Post, J.E., Heaney, P.J., Dreele, R.B.V., and Hanson, J.C. (2003) Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganéite. American Mineralogist, 88, 782–788.10.2138/am-2003-5-607Search in Google Scholar

Poty, B., Holland, H.D., and Borcsik, M. (1972) Solution-mineral equilibria in the system MgO-SiO2-H2O-MgCl2 at 500°C and 1 kbar. Geochimica et Cosmochimica Acta, 36, 1101–1113.10.1016/0016-7037(72)90094-4Search in Google Scholar

Reguer, S., Neff, D., Bellot-Gurlet, L., and Dillmann, P. (2007) Deterioration of iron archaeological artefacts: micro-Raman investigation on Cl-containing corrosion products. Journal of Raman Spectroscopy, 38, 389–397.10.1002/jrs.1659Search in Google Scholar

Rémazeilles, C., and Refait, P. (2007) On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corrosion Science, 49, 844–857.10.1016/j.corsci.2006.06.003Search in Google Scholar

Rogers, A.F. (1924) Kempite, a new manganese mineral from California. American Journal of Science, 44, 145–150.10.2475/ajs.s5-8.44.145Search in Google Scholar

Rucklidge, J.C., and Patterson, G.C. (1977) The role of chlorine in serpentinization. Contributions to Mineralogy and Petrology, 65, 39–44.10.1007/BF00373568Search in Google Scholar

Saini-Eidukat, B., Kucha, H., and Keppler, H. (1994) Hibbingite, Fe2(OH)3Cl, a new mineral from the Duluth Complex, Minnesota, with implications for the oxidation of Fe-bearing compounds and the transport of metals. American Mineralogist, 79, 555–561.Search in Google Scholar

Sciberras, M.J., Leverett, P., Williams, P.A., Hibbs, D.E., Downes, P.J., Welch, M.D., and Kampf, A.R. (2013) Paratacamite-(Ni),Cu3(Ni,Cu)Cl2(OH)6, a new mineral from the Carr Boyd Rocks mine, Western Australia. Australian Journal of Mineralogy, 17, 39–44.Search in Google Scholar

Shatskiy, A., Litasov, K.D., Sharygin, I.S., and Ohtani, E. (2017) Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Research, 45, 208–227.10.1016/j.gr.2017.02.009Search in Google Scholar

Shtukenberg, A., and Punin, Y.O. (2007) Stress induced optical anomalies. In A. Shtukenberg and Y. Shtukenberg, and Kahr, Eds., Optically Anomalous Crystal, p. 35–94. Springer.10.1007/1-4020-5353-3_2Search in Google Scholar

Smith, B.H.S., Nowicki, T.E., Russell, J.K., Webb, K.J., Mitchell, R.H., Hetman, C.M., Harder, M., Skinner, E., and Robey, J.A. (2013) Kimberlite terminology and classification. In D.G. Pearson and H.S. Grütter, Eds., Proceedings of 10th International Kimberlite Conference, p. 1–17. Springer.10.1007/978-81-322-1173-0_1Search in Google Scholar

Ståhl, K., Nielsen, K., Jiang, J., Lebech, B., Hanson, J.C., Norby, P., and van Lanschot, J. (2003) On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corrosion Science, 45, 2563–2575.10.1016/S0010-938X(03)00078-7Search in Google Scholar

Steiner, T. (1998) Hydrogen-bond distances to halide ions in organic and organometallic crystal structures: up-to-date database study. Acta Crystallographica, B54, 456–463.10.1107/S0108768197014821Search in Google Scholar

Welch, M.D., Sciberras, M.J., Williams, P.A., Leverett, P., Schlüter, J., and Malcherek, T. (2014) A temperature-induced reversible transformation between paratacamite and herbertsmithite. Physics and Chemistry of Minerals, 41, 33–48.10.1007/s00269-013-0621-5Search in Google Scholar

Yudin, D.S., Tomilenko, A.A., Alifirova, T.A., Travin, A.V., Murzintsev, N.G., and Pokhilenko, N.P. (2011) Results of 40Ar/39Ar dating of phlogopites from kelyphitic rims around garnet grains (Udachnaya-Vostochnaya kimberlite pipe). Doklady Earth Sciences, 469, 728–731.10.1134/S1028334X16070175Search in Google Scholar

Received: 2017-11-03
Accepted: 2018-05-11
Published Online: 2018-08-28
Published in Print: 2018-09-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Highlights and Breakthroughs
  2. The tales of disequilibrium and equilibrium crystallization of rare metal minerals: Data from new experiments
  3. Pressure, temperature, water content, and oxygen fugacity dependence of the Mg grain-boundary diffusion coefficient in forsterite
  4. Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS
  5. The effect of disequilibrium crystallization on Nb-Ta fractionation in pegmatites: Constraints from crystallization experiments of tantalite-tapiolite
  6. Titanite major and trace element compositions as petrogenetic and metallogenic indicators of Mo ore deposits: Examples from four granite plutons in the southern Yidun arc, SW China
  7. Kuliginite, a new hydroxychloride mineral from the Udachnaya kimberlite pipe, Yakutia: Implications for low-temperature hydrothermal alteration of the kimberlites
  8. Electron microprobe technique for the determination of iron oxidation state in silicate glasses
  9. Experimental investigation of F and Cl partitioning between apatite and Fe-rich basaltic melt at 0 GPa and 950–1050 °C: Evidence for steric controls on apatite-melt exchange equilibria in OH-poor apatite
  10. Carbonic acid monohydrate
  11. High spatial resolution analysis of the iron oxidation state in silicate glasses using the electron probe
  12. Disturbance of the Sm-Nd isotopic system by metasomatic alteration: A case study of fluorapatite from the Sin Quyen Cu-LREE-Au deposit, Vietnam
  13. Segerstromite, Ca3(As5+O4)2[As3+(OH)3]2, the first mineral containing As3+(OH)3, the arsenite molecule, from the Cobriza mine in the Atacama Region, Chile
  14. Vestaite, (Ti4+Fe2+) Ti34+ O9, a new mineral in the shocked eucrite Northwest Africa 8003
  15. Decomposition boundary from high-pressure clinoenstatite to wadsleyite + stishovite in MgSiO3
  16. Letter
  17. Making tissintite: Mimicking meteorites in the multi-anvil
  18. Book Review
Downloaded on 26.12.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2018-6363/html
Scroll to top button