Startseite Trace element thermometry of garnet-clinopyroxene pairs, revisited
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Trace element thermometry of garnet-clinopyroxene pairs, revisited

  • Richard N. Abbott EMAIL logo
Veröffentlicht/Copyright: 2. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Two errors are identified in the implementation of a recently published thermometer based on the partitioning of trace elements between garnet and clinopyroxene. The errors compromise comparisons with other thermometers and experimental results. Using the same methodology, a new, simplified procedure is presented to rectify the errors and test the consequences. In general, the corrected thermometer gives temperatures that are 30–50 °C higher than uncorrected values.

Acknowledgements

I thank Editor Ian Swainson for his patience and attention to details. I also thank the reviewers for their helpful comments.

References cited

Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277–279.Suche in Google Scholar

Pickles, J.R., Blundy, J.D., and Brooker, R.A. (2016) Trace element thermometry of garnet-clinopyroxene pairs. American Mineralogist, 101, 1438–1450.10.2138/am-2016-5427Suche in Google Scholar

Sun, C., and Liang, Y. (2015) A REE-in-garnet-clinopyroxene thermobarometer for eclogites, granulites and garnet peridotites. Chemical Geology, 393-394, 79–9210.1016/j.chemgeo.2014.11.014Suche in Google Scholar

Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.10.2138/am.2010.3371Suche in Google Scholar

Received: 2018-01-30
Accepted: 2018-05-16
Published Online: 2018-07-02
Published in Print: 2018-07-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Highlights and Breakthroughs
  2. Biosilica: Structure, function, science, technology, and inspiration
  3. Gypsum, bassanite, and anhydrite at Gale crater, Mars
  4. Redox-induced nucleation and growth of goethite on synthetic hematite nanoparticles
  5. Effect of alkalinity on sulfur concentration at sulfide saturation in hydrous basaltic andesite to shoshonite melts at 1270 °C and 1 GPa
  6. Is fibrous ferrierite a potential health hazard? Characterization and comparison with fibrous erionite
  7. Experimental investigation of basalt and peridotite oxybarometers: Implications for spinel thermodynamic models and Fe3+ compatibility during generation of upper mantle melts
  8. Pressure, sulfur, and metal-silicate partitioning: The effect of sulfur species on the parameterization of experimental results
  9. Analysis and visualization of vanadium mineral diversity and distribution
  10. On the relative timing of listwaenite formation and chromian spinel equilibration in serpentinites
  11. The dynamics of Fe oxidation in riebeckite: A model for amphiboles
  12. AMFORM, a new mass-based model for the calculation of the unit formula of amphiboles from electron microprobe analyses
  13. Fe-kaolinite in granite saprolite beneath sedimentary kaolin deposits: A mode of Fe substitution for Al in kaolinite
  14. Kalistrontite, its occurrence, structure, genesis, and significance for the evolution of potash deposits in North Yorkshire, U.K.
  15. The uppermost mantle section below a remnant proto-Philippine Sea island arc: Insights from the peridotite fragments from the Daito Ridge
  16. Letter
  17. Isotopic signature of core-derived SiO2
  18. Letter
  19. Heat capacity measurements of CaAlSiO4F from 5 to 850 K and its standard entropy
  20. Letter
  21. Trace element thermometry of garnet-clinopyroxene pairs, revisited
Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2018-6487/html
Button zum nach oben scrollen