Startseite Insights into solar nebula formation of pyrrhotite from nanoscale disequilibrium phases produced by H2S sulfidation of Fe metal
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Insights into solar nebula formation of pyrrhotite from nanoscale disequilibrium phases produced by H2S sulfidation of Fe metal

  • Zack Gainsforth EMAIL logo , Dante S. Lauretta , Nobumichi Tamura , Andrew J. Westphal , Christine E. Jilly-Rehak und Anna L. Butterworth
Veröffentlicht/Copyright: 5. September 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Lauretta (2005) produced sulfide in the laboratory by exposing canonical nebular metal analogs to H2S gas under temperatures and pressures relevant to the formation of the Solar System. The resulting reactions produced a suite of sulfides and nanophase materials not visible at the microprobe scale, but which we have now analyzed by TEM for comparison with interplanetary dust samples and comet Wild 2 samples returned by the Stardust mission. We find the unexpected result that disequilibrium formation favors pyrrhotite over troilite and also produces minority schreibersite, daubréelite, barringerite, taenite, oldhamite, and perryite at the metal-sulfide interface. TEM identification of nanophases and analysis of pyrrhotite superlattice reflections illuminate the formation pathway of disequilibrium sulfide. We discuss the conditions under which such disequilibrium can occur, and implications for formation of sulfide found in extraterrestrial materials.

Acknowledgments

We thank our editor Rhian Jones, as well as Adrian Brearley and an anonymous reviewer for insightful evaluation of this paper. Their efforts significantly improved the quality of this work. The ALS and NCEM are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.

References cited

Balzar, D. (1999) Voigt-function model in diffraction line-broadening analysis. International Union of Crystallography Monographs on Crystallography, 10, 94–126.Suche in Google Scholar

Balzar, D., Audebrand, N., Daymond, M., Fitch, A., Hewat, A., Langford, J., Bail, A.L., Louër, D., Masson, O., and McCowan, C. (2004) Size-strain line-broadening analysis of the ceria round-robin sample. Journal of Applied Crystallography, 37, 911–924.10.1107/S0021889804022551Suche in Google Scholar

Berger, E.L., Lauretta, D.S., Zega, T.J., and Keller, L.P. (2016) Heterogeneous histories of Ni-bearing pyrrhotite and pentlandite grains in the CI chondrites Orgueil and Alais. Meteoritics and Planetary Science, 51, 1813–1829.10.1111/maps.12721Suche in Google Scholar

Bullock, E., Gounelle, M., Lauretta, D., Grady, M., and Russell, S. (2005) Mineralogy and texture of Fe-Ni sulfides in CI1 chondrites: Clues to the extent of aqueous alteration on the CI1 parent body. Geochimica et Cosmochimica Acta, 69, 2687–2700.10.1016/j.gca.2005.01.003Suche in Google Scholar

Carlson, W.D., Pattison, D.R.M., and Caddick, M.J. (2015) Beyond the equilibrium paradigm: How consideration of kinetics enhances metamorphic interpretation. American Mineralogist, 100, 1659–1667.10.2138/am-2015-5097Suche in Google Scholar

Christoffersen, R., and Buseck, P.R. (1986) Mineralogy of interplanetary dust particles from the “olivine” infrared class. Earth and Planetary Science Letters, 78, 53–66.10.1016/0012-821X(86)90172-XSuche in Google Scholar

Condit, R.H., Hobbins, R.R., and Birchenall, C.E. (1974) Self-diffusion of iron and sulfur in ferrous sulfide. Oxidation of Metals, 8, 409–455.10.1007/BF00603390Suche in Google Scholar

Cullity, B. and Stock, S. (1978) Elements of X-ray Diffraction, 2nd ed. Addison-Wesley, Reading, Massachusetts.Suche in Google Scholar

Dai, Z., and Bradley, J. (2001) Iron-nickel sulfides in anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta, 65, 3601–3612.10.1016/S0016-7037(01)00692-5Suche in Google Scholar

Davis, A.M., and Richter, F.M. (2005) Condensation and Evaporation of Solar System Materials. Elsevier.Suche in Google Scholar

de Villiers, J.P.R., and Liles, D.C. (2010) The crystal-structure and vacancy distribution in 6C pyrrhotite. American Mineralogist, 95, 148–152.10.2138/am.2010.3266Suche in Google Scholar

de Villiers, J.P.R., Liles, D.C., and Becker, M. (2009) The crystal structure of a naturally occurring 5C pyrrhotite from Sudbury, its chemistry, and vacancy distribution. American Mineralogist, 94, 1405–1410.10.2138/am.2009.3081Suche in Google Scholar

Doan, A.S., and Goldstein, J.I. (1970) The ternary phase diagram, Fe-Ni-P. Metallurgical Transactions, 1, 1759–1767.10.1007/BF02642026Suche in Google Scholar

Erhart, H., and Grabke, H.J. (2013) Equilibrium segregation of phosphorus at grain boundaries of Fe–P, Fe–C–P, Fe–Cr–P, and Fe–Cr–C–P alloys. Metal Science, 15, 401–408.10.1179/030634581790426877Suche in Google Scholar

Etschmann, B., Pring, A., Putnis, A., Grguric, B.A., and Studer, A. (2004) A kinetic study of the exsolution of pentlandite (Ni, Fe)9S8 from the monosulfide solid solution (Fe, Ni)S. American Mineralogist, 89, 39–50.10.2138/am-2004-0106Suche in Google Scholar

Gainsforth, Z. (2016) Stoichiometry Fitter, a GUI for fitting solid solutions and analyzing mineral phases. Microscopy and Microanalysis, 22, 1808–1809.10.1017/S1431927616009880Suche in Google Scholar

Gainsforth, Z., Butterworth, A.L., Stodolna, J., Westphal, A.J., Huss, G.R., Nagashima, K., Ogliore, R., Brownlee, D.E., Joswiak, D., Tyliszczak, T., and Simionovici, A.S. (2015) Constraints on the formation environment of two chondrule-like igneous particles from comet 81P/Wild 2. Meteoritics and Planetary Science, 50, 976–1004.10.1111/maps.12445Suche in Google Scholar

Gainsforth, Z., McLeod, A.S., Butterworth, A.L., Dominguez, G., Basov, D., Keilmann, F., Thiemens, M., Tyliszczak, T., and Westphal, A.J. (2013) Caligula, a Stardust sulfide-silicate assemblage viewed through SEM, nanoFTIR, and STXM. 45th Lunar and Planetary Science Conference, 44, 2332.Suche in Google Scholar

Gainsforth, Z., Ogliore, R.C., Bustillo, K., Westphal, A.J., and Butterworth, A.L. (2014) Ni zoned nano-pyrrhotite from Stardust Track C2062,2,152 (Cecil). 45th Lunar and Planetary Science Conference, 2637.Suche in Google Scholar

Harries, D., and Langenhorst, F. (2013) The nanoscale mineralogy of Fe,Ni sulfides in pristine and metamorphosed CM and CM/CI-like chondrites: Tapping a petrogenetic record. Meteoritics and Planetary Science, 48, 879–903.10.1111/maps.12089Suche in Google Scholar

Harries, D., Pollok, K., and Langenhorst, F. (2011) Translation interface modulation in NC-pyrrhotites: Direct imaging by TEM and a model toward understanding partially disordered structural states. American Mineralogist, 96, 716–731.10.2138/am.2011.3644Suche in Google Scholar

Hunter, J.D. (2007) Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9, 90–95.10.1109/MCSE.2007.55Suche in Google Scholar

Imae, N. (1994) Direct evidence of sulfidation of metallic grain in chondrites. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 70, 133–137.Suche in Google Scholar

Jacquet, E., Alard, O., and Gounelle, M. (2015) The formation conditions of enstatite chondrites: Insights from trace element geochemistry of olivine-bearing chondrules in Sahara 97096 (EH3). Meteoritics and Planetary Science, 50, 1624–1642.10.1111/maps.12481Suche in Google Scholar

Larimer, J.W. (1968) An experimental investigation of oldhamite, CaS; and the petrologic significance of oldhamite in meteorites. Geochimica et Cosmochimica Acta, 32, 965–982, https://doi.org/10.1016/0016-7037(68)90061-6.10.1016/0016-7037(68)90061-6Suche in Google Scholar

Lauretta, D.S. (2005) Sulfidation of an iron–nickel–chromium–cobalt–phosphorus alloy in 1% H2S–H2 gas mixtures at 400–1000 °C. Oxidation of Metals, 64, 1–22.10.1007/s11085-005-5703-4Suche in Google Scholar

Lauretta, D.S., and Buseck, P.R. (2003) Opaque minerals in chondrules and fine-grained chondrule rims in the Bishunpur (LL3.1) chondrite. Meteoritics and Planetary Science, 38, 59–80.10.1111/j.1945-5100.2003.tb01046.xSuche in Google Scholar

Lauretta, D.S., Kremser, D.T., and Fegley, B.J. (1996) The rate of iron sulfide formation in the solar nebula. Icarus, 122, 288–315.10.1006/icar.1996.0126Suche in Google Scholar

Lauretta, D.S., Lodders, K., and Fegley, B.J. (1997) Experimental simulations of sulfide formation in the solar nebula. Science, 277, 358–360.10.1126/science.277.5324.358Suche in Google Scholar

Lehner, S.W., Buseck, P.R., and McDonough, W.F. (2010) Origin of kamacite, schreibersite, and perryite in metal-sulfide nodules of the enstatite chondrite Sahara 97072 (EH3). Meteoritics and Planetary Science, 45, 289–303.10.1111/j.1945-5100.2010.01027.xSuche in Google Scholar

Lewis, J.S. (1972) Low temperature condensation from the solar nebula. Icarus, 16, 241–252.10.1016/0019-1035(72)90071-1Suche in Google Scholar

Li, Y., and Audétat, A. (2012) Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth and Planetary Science Letters, 355-356, 327–340.10.1016/j.epsl.2012.08.008Suche in Google Scholar

Lodders, K. (2010) Solar system abundances of the elements. Principles and Perspectives in Cosmochemistry, pp. 379–417.10.1007/978-3-642-10352-0_8Suche in Google Scholar

Lord, H.C. III (1965) Molecular equilibria and condensation in a solar nebula and cool stellar atmospheres. Icarus, 4, 279–288.10.1016/0019-1035(65)90005-9Suche in Google Scholar

Mackinnon, I., and Rietmeijer, F. (1987) Mineralogy of chondritic interplanetary dust particles. Reviews of Geophysics, 25, 1527–1553.10.1029/RG025i007p01527Suche in Google Scholar

MacLean, W.H., and Shimazaki, H. (1976) The partition of Co, Ni, Cu, and Zn between sulfide and silicate liquids. Economic Geology, 71, 1049–1057.10.2113/gsecongeo.71.6.1049Suche in Google Scholar

Nakazawa, H. and Morimoto, N. (1971) Phase relations and superstructures of pyrrhotite, Fe1−xS. Materials Research Bulletin, 6, 345–357.10.1016/0025-5408(71)90168-1Suche in Google Scholar

Narita, T., and Nishida, K. (1973) On the high-temperature corrosion of Fe-Cr alloys in sulfur vapor. Oxidation of Metals, 6, 157–180.10.1007/BF00612111Suche in Google Scholar

Ogliore, R.C., Butterworth, A.L., Fakra, S.C., Gainsforth, Z., Marcus, M.A., and Westphal, A.J. (2010) Comparison of the oxidation state of Fe in comet 81P/ Wild 2 and chondritic-porous interplanetary dust particles. Earth and Planetary Science Letters, 296, 278–286.10.1016/j.epsl.2010.05.011Suche in Google Scholar

Ogliore, R.C., Butterworth, A.L., and Gainsforth, Z. (2012) Sulfur isotope measurements of a Stardust fragment. 40th Lunar and Planetary Sciences Conference, 1670.Suche in Google Scholar

Okada, A., Kobayashi, K., Ito, T., and Sakurai, T. (1991) Structure of synthetic perryite, (Ni,Fe)8(Si,P)3. Acta Crystallographica, C47, 1358–1361, 10.1107/S0108270191000483.Suche in Google Scholar

Oliphant, T.E. (2007) Python for scientific computing. Computing in Science & Engineering, 9, 10–20.10.1109/MCSE.2007.58Suche in Google Scholar

Osaka, T., Nakazawa, H., Hatano, T., and Sakaguchi, K. (1976) Formation of iron sulfide fine particles by evaporation in argon gas. Journal of Crystal Growth, 34, 92–102.10.1016/0022-0248(76)90266-9Suche in Google Scholar

Pérez, F., and Granger, B.E. (2007) IPython: A system for interactive scientific computing. Computing in Science & Engineering, 9, 21–29.10.1109/MCSE.2007.53Suche in Google Scholar

Pósfai, M., Sharp, T.G., and Kontny, A. (2000) Pyrrhotite varieties from the 9.1 km deep borehole of the KTB project. American Mineralogist, 85, 1406–1415.10.2138/am-2000-1009Suche in Google Scholar

Pratt, A.R., Muir, I.J., and Nesbitt, H.W. (1994) X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochimica et Cosmochimica Acta, 58, 827–841.10.1016/0016-7037(94)90508-8Suche in Google Scholar

Putnis, A. (1975) Observations on coexisting pyrrhotite phases by transmission electron microscopy. Contributions to Mineralogy and Petrology, 52, 307–313.10.1007/BF00401459Suche in Google Scholar

Schrader, D.L., McCoy, T.J., and Davidson, J. (2015) Widespread evidence for high-temperature formation of pentlandite in chondrites. Meteoritics and Planetary Science, 46, 1604.10.1016/j.gca.2016.06.012Suche in Google Scholar

Stodolna, J., Gainsforth, Z., Butterworth, A.L., and Westphal, A.J. (2014) Characterization of preserved primitive fine-grained material from the Jupiter family comet 81P/Wild 2—A new link between comets and CP-IDPs. Earth and Planetary Science Letters, 388, 367–373.10.1016/j.epsl.2013.12.018Suche in Google Scholar

Swartzendruber, L.J., Itkin, V.P., and Alcock, C.B. (1991) The Fe-Ni (iron-nickel) system. Journal of Phase Equilibria, 12, 288–312.10.1007/BF02649918Suche in Google Scholar

Tamura, N. (2014) XMAS: A versatile tool for analyzing synchrotron X-ray microdiffraction data. In R. Barabash and G. Ice, Eds., Strain and Dislocaton Gradients from Diffraction Spatially-Resolved Local Structure and Defects, p. 125–155. Imperial College Press, London.10.1142/9781908979636_0004Suche in Google Scholar

Tamura, N., Kunz, M., Chen, K., Celestre, R.S., MacDowell, A.A., and Warwick, T. (2009) A superbend X-ray microdiffraction beamline at the advanced light source. Materials Science and Engineering A, 524, 28–32.10.1016/j.msea.2009.03.062Suche in Google Scholar

Van Der Walt, S., Colbert, S.C., and Varoquaux, G. (2011) The NumPy array: A structure for efficient numerical computation. Computing in Science & Engineering, 13, 22–30.10.1109/MCSE.2011.37Suche in Google Scholar

Van Dyck, D., Broddin, D., Mahy, J., and Amelinckx, S. (1987) Electron diffraction of translation interface modulated structures. Physica status solidi (a), 103, 357–373.10.1002/pssa.2211030204Suche in Google Scholar

Wang, H., and Salveson, I. (2005) A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1−xS (0 ≤ x ≤ 0.125): polymorphs, phase relations and transitions, electronic and magnetic structures. Phase Transitions, 78, 547–567.10.1080/01411590500185542Suche in Google Scholar

Westphal, A.J., Fakra, S.C., Gainsforth, Z., Marcus, M.A., Ogliore, R.C., and Butterworth, A.L. (2009) Mixing fraction of inner solar system material in Comet 81P/Wild2. The Astrophysical Journal, 694, 18–28.10.1088/0004-637X/694/1/18Suche in Google Scholar

Williamson, G., and Hall, W. (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1, 22–31.10.1016/0001-6160(53)90006-6Suche in Google Scholar

Wojdyr, M. (2010) Fityk: a general-purpose peak fitting program. Journal of Applied Crystallography, 43, 1126–1128.10.1107/S0021889810030499Suche in Google Scholar

Yund, R.A., and Hall, H.T. (1969) Hexagonal and monoclinic pyrrhotites. Economic Geology, 64, 420–423.10.2113/gsecongeo.64.4.420Suche in Google Scholar

Zhang, K., Zheng, H., Wang, J., and Wang, R. (2008) Transmission electron microscopy on iron monosulfide varieties from the Suizhou meteorite. Physics and Chemistry of Minerals, 35, 425–432.10.1007/s00269-008-0237-3Suche in Google Scholar

Zolensky, M.E., and Thomas, K.L. (1995) Iron and iron-nickel sulfides in chondritic interplanetary dust particles. Geochimica et Cosmochimica Acta, 59, 4707.10.1016/0016-7037(95)00329-0Suche in Google Scholar

Received: 2016-5-6
Accepted: 2017-5-23
Published Online: 2017-9-5
Published in Print: 2017-9-26

© 2017 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Highlights and Breakthroughs
  2. Looking for “missing” nitrogen in the deep Earth
  3. Actinides in Geology, Energy, and the Environment
  4. Crystal structure of richetite revisited: Crystallographic evidence for the presence of pentavalent uranium
  5. Actinides in Geology, Energy, and the Environment
  6. Mobilization and agglomeration of uraninite nanoparticles: A nano-mineralogical study of samples from the Matoush Uranium ore deposit
  7. Actinides in Geology, Energy, and the Environment
  8. Radiation damage in sulfides: Radioactive galena from burning heaps, after coal mining in the Lower Silesian basin (Czech Republic)
  9. Special Collection: Mechanisms, Rates, and Timescales of Geochemical Transport Processes in the Crust and Mantle
  10. Element mobility during regional metamorphism in crustal and subduction zone environments with a focus on the rare earth elements (REE)
  11. Special Collection: Water in Nominally Hydrous and Anhydrous Minerals
  12. Subsolidus hydrogen partitioning between nominally anhydrous minerals in garnet-bearing peridotite
  13. Special Collection: Water in Nominally Hydrous and Anhydrous Minerals
  14. OH defects in quartz as monitor for igneous, metamorphic, and sedimentary processes
  15. Quantitative electron backscatter diffraction (EBSD) data analyses using the dictionary indexing (DI) approach: Overcoming indexing difficulties on geological materials
  16. Trace element inventory of meteoritic Ca-phosphates
  17. Insights into solar nebula formation of pyrrhotite from nanoscale disequilibrium phases produced by H2S sulfidation of Fe metal
  18. Unraveling the presence of multiple plagioclase populations and identification of representative two-dimensional sections using a statistical and numerical approach
  19. Refractive indices of minerals and synthetic compounds
  20. Can we use pyroxene weathering textures to interpret aqueous alteration conditions? Yes and No
  21. Phase relations and formation of K-bearing Al-10 Å phase in the MORB+H2O system: Implications for H2O- and K-cycles in subduction zones
  22. Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite
  23. Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: A possible indicator of shock conditions of meteorites
  24. Single crystal synthesis of δ-(Al,Fe)OOH
  25. Letter
  26. EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry
  27. New Mineral Names
Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2017-5848/html?lang=de
Button zum nach oben scrollen