Home Looking for “missing” nitrogen in the deep Earth
Article
Licensed
Unlicensed Requires Authentication

Looking for “missing” nitrogen in the deep Earth

  • Dmitry A. Zedgenizov EMAIL logo and Konstantin D. Litasov
Published/Copyright: September 5, 2017
Become an author with De Gruyter Brill

Received: 2017-6-22
Accepted: 2017-6-29
Published Online: 2017-9-5
Published in Print: 2017-9-26

© 2017 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Highlights and Breakthroughs
  2. Looking for “missing” nitrogen in the deep Earth
  3. Actinides in Geology, Energy, and the Environment
  4. Crystal structure of richetite revisited: Crystallographic evidence for the presence of pentavalent uranium
  5. Actinides in Geology, Energy, and the Environment
  6. Mobilization and agglomeration of uraninite nanoparticles: A nano-mineralogical study of samples from the Matoush Uranium ore deposit
  7. Actinides in Geology, Energy, and the Environment
  8. Radiation damage in sulfides: Radioactive galena from burning heaps, after coal mining in the Lower Silesian basin (Czech Republic)
  9. Special Collection: Mechanisms, Rates, and Timescales of Geochemical Transport Processes in the Crust and Mantle
  10. Element mobility during regional metamorphism in crustal and subduction zone environments with a focus on the rare earth elements (REE)
  11. Special Collection: Water in Nominally Hydrous and Anhydrous Minerals
  12. Subsolidus hydrogen partitioning between nominally anhydrous minerals in garnet-bearing peridotite
  13. Special Collection: Water in Nominally Hydrous and Anhydrous Minerals
  14. OH defects in quartz as monitor for igneous, metamorphic, and sedimentary processes
  15. Quantitative electron backscatter diffraction (EBSD) data analyses using the dictionary indexing (DI) approach: Overcoming indexing difficulties on geological materials
  16. Trace element inventory of meteoritic Ca-phosphates
  17. Insights into solar nebula formation of pyrrhotite from nanoscale disequilibrium phases produced by H2S sulfidation of Fe metal
  18. Unraveling the presence of multiple plagioclase populations and identification of representative two-dimensional sections using a statistical and numerical approach
  19. Refractive indices of minerals and synthetic compounds
  20. Can we use pyroxene weathering textures to interpret aqueous alteration conditions? Yes and No
  21. Phase relations and formation of K-bearing Al-10 Å phase in the MORB+H2O system: Implications for H2O- and K-cycles in subduction zones
  22. Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite
  23. Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: A possible indicator of shock conditions of meteorites
  24. Single crystal synthesis of δ-(Al,Fe)OOH
  25. Letter
  26. EosFit-Pinc: A simple GUI for host-inclusion elastic thermobarometry
  27. New Mineral Names
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2017-6218/html
Scroll to top button