Startseite Hf and Nd isotope systematics of early Archean komatiites from surface sampling and ICDP drilling in the Barberton Greenstone Belt, South Africa
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hf and Nd isotope systematics of early Archean komatiites from surface sampling and ICDP drilling in the Barberton Greenstone Belt, South Africa

  • Janne Blichert-Toft EMAIL logo , Nicholas T. Arndt , Allan Wilson und Grace Coetzee
Veröffentlicht/Copyright: 24. November 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

To constrain the origin of komatiites from the Barberton Greenstone Belt, South Africa, we measured 147Sm-143Nd and 176Lu-176Hf compositions for 18 komatiites from core obtained during the International Continental Drilling Program in the Komati Formation of the Barberton Belt, as well as 33 komatiites from surface outcrops of the Komati, Hooggenoeg, and Weltevreden Formations, these latter for purposes of comparison between core and surface samples. Magmatic clinopyroxene from surface samples near the drill site was also analyzed. For the Lu-Hf isotope system, the Komati Formation core and surface samples including the clinopyroxene define a linear array whose slope corresponds to an age of 3426 ± 16 Ma (MSWD = 118; εHf(T) = +2.2), which is slightly younger than the accepted age of the rocks (3.48 Ga). The Sm-Nd isotope data for the same set of samples likewise fall along a linear array also yielding a younger age of 3339 ± 12 Ma (MSWD = 42; εNd(T) = +2.8). The high MSWD for both isotope systems indicate substantial scatter at variance with normal magmatic processes, likely implying element mobility disturbing even these relatively robust isotopic systems shortly after eruption of the lavas. The average initial εNd and εHf of the core samples at 3.48 Ga are +0.45 and +1.4, respectively, in overall accordance with the positive errorchron intercepts and a depleted mantle source at 3.5 Ga. In contrast, the clinopyroxene and their host rocks have strongly positive εHf(T) of about +5 and negative εNd(T) of about -2. Given the overall scatter of the whole-rock data, the most robust constraint on the composition of the komatiite source comes from the clinopyroxene. Their positive εHf(T) is in line with, though somewhat higher than other results from komatiites from the Komati Formation, but their negative εNd(T) is unexpected in that it indicates a source with long-term low Sm/Nd, which is at odds with its long-term high Lu/Hf. This signature is also found in the trace element compositions of some of the komatiites, such as moderately enriched LREE, negative Hf anomalies, and low Hf/Sm ratios. The origin of these features is uncertain but one possibility is that the discordance between the Hf and Nd isotope systems reflects the presence of deepsea sediments in the source of some of the Barberton komatiites. The possible presence of a surface component in an ancient deep mantle source has wide-ranging implications for mantle-crust interaction and dynamics in the early Earth and for constraining a minimum age for the onset of plate tectonics.

Received: 2015-2-15
Accepted: 2015-5-19
Published Online: 2015-11-24
Published in Print: 2015-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. On understanding the structure and composition of crystals
  2. Stable and metastable silicate liquid immiscibility in ferrobasalts
  3. When was the Earth’s conveyor belt set in motion?
  4. Trace element partitioning into sulfide: How lithophile elements become chalcophile and vice versa
  5. Petrology on Mars
  6. Hf and Nd isotope systematics of early Archean komatiites from surface sampling and ICDP drilling in the Barberton Greenstone Belt, South Africa
  7. Quasicrystals at extreme conditions: The role of pressure in stabilizing icosahedral Al63Cu24Fe13 at high temperature
  8. Tracking the thermal decomposition of plasma-sprayed hydroxylapatite
  9. Experimental constraints on bubble formation and growth during magma ascent: A review
  10. Ankerite grains with dolomite cores: A diffusion chronometer for low- to medium-grade regionally metamorphosed clastic sediments
  11. Crystal structure, high-pressure, and high-temperature behavior of carbonates in the K2Mg(CO3)2–Na2Mg(CO3)2 join
  12. Temperature micro-mapping in oscillatory-zoned chlorite: Application to study of a green-schist facies fault zone in the Pyrenean Axial Zone (Spain)
  13. Micro- and nano-characterization of Zn-clays in nonsulfide supergene ores of southern Peru
  14. Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+Cu content from the central Pacific Ocean
  15. The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting
  16. Weathering of the Ethiopian volcanic province: A new weathering index to characterize and compare soils
  17. Recommended mineral-melt partition coefficients for FRTEs (Cu), Ga, and Ge during mantle melting
  18. Tetrahedral plot diagram: A geometrical solution for quaternary systems
  19. Investigations on alunogen under Mars-relevant temperature conditions: An example for a single-crystal-to-single-crystal phase transition
  20. Crystallization of calcium oxalate hydrates by interaction of calcite marble with fungus Aspergillus niger
  21. Direct and indirect evidence for free oxygen (O2–) in MO-silicate glasses and melts (M = Mg, Ca, Pb)
  22. Effect of fluid composition on growth rate of monazite in quartzite at 1.0 GPa and 1000 °C
  23. Determination of the full elastic tensor of single crystals using shear wave velocities by Brillouin spectroscopy
  24. Temperature dependence of the velocity-density relation for liquid metals under high pressure: Implications for the Earth’s outer core
  25. Thermal, compositional, and compressional demagnetization of cementite
  26. The MnCO3-II high-pressure polymorph of rhodocrosite
  27. Lanthanide tetrads in normalized rare element patterns of zircon from the Koktokay No. 3 granitic pegmatite, Altay, NW China
  28. Hydrogrossular, Ca3Al2(SiO4)3–x(H4O4)x: An ab initio investigation of its structural and energetic properties
  29. High-pressure synthesis of skiagite-majorite garnet and investigation of its crystal structure
  30. Mineralogical evolution of Fe–Si-rich layers at the olivine-water interface during carbonation reactions
  31. High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover
  32. Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles
  33. Apexite, NaMg(PO4)·9H2O, a new struvite-type phase with a heteropolyhedral cluster
  34. The mechanism of infiltration of metamorphic fluids recorded by hydration and carbonation of epidote-amphibolite facies metabasaltic sills in the SW Scottish Highlands
  35. The axial ratio of hcp Fe and Fe–Ni–Si alloys to the conditions of Earth’s inner core
  36. Shock-induced mobilization of metal and sulfide in planetesimals: Evidence from the Buck Mountains 005 (L6 S4) dike-bearing chondrite
  37. The accretion and differentiation of Earth under oxidizing conditions
  38. Dislocation microstructures in simple-shear-deformed wadsleyite at transition-zone conditions: Weak-beam dark-field TEM characterization of dislocations on the (010) plane
  39. Chemical composition and crystal structure of merrillite from the Suizhou meteorite
Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2015-5325/html?lang=de
Button zum nach oben scrollen