Startseite The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting

  • Yan Tao EMAIL logo , Keith Putirka , Rui-Zhong Hu und Chusi Li
Veröffentlicht/Copyright: 24. November 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Magmatic activity of the Emeishan large igneous province (ELIP) of SW China is one of the most significant geological events of the late Paleozoic. The large volume flood basalts plus rare picrites were erupted in Late Permian. Previous studies indicate that the basalts are the derivatives of primary mantle-derived magma by fractional crystallization, but the depths at which this process took place remain unknown. To answer this question, we use phenocryst compositions and mineral-liquid thermobarometers to determine the P-T conditions of the magma reservoirs where crystallization occurred, then use these data to reconstruct the magma plumbing system of the igneous province. Thermobarometric calculations show that most picrite-hosted clinopyroxene phenocrysts crystallized at ~25 km and 1200-1280 °C, whereas most basalt-hosted clinopyroxene phenocrysts crystallized at depths <20 km and temperatures <1200 °C. Some picrites containing primitive olivine with Fo up to Fo92 likely formed by eruption of the most primitive magma with composition similar to the primary magma from the deepest reservoir possibly at the Moho. Parental magmas yield mantle potential temperatures of 1740-1810 °C, which are the highest such temperatures yet recorded for terrestrial magmas of any age. Less primitive picrites containing both olivine and clinopyroxene phenocrysts formed by eruption of moderately fractionated magma from a reservoir in the middle crust. Basalts and basaltic andesites formed by eruption of the most fractionated magmas from the reservoirs in the upper crust, coinciding with the depths of coeval sulfide ore-bearing and Fe-Ti-V oxide ore-bearing mafic-ultramafic intrusions. The reason that the Emeishan volcanic sequence is dominated by basalts is because most of the mantle-derived magma was trapped in the middle and upper crusts, undergoing variable degrees of crystal fractionation plus crustal contamination before eruption. Primitive picrites are rare because their eruption requires a trans-lithosphere conduit, which is difficult to create and maintain due to increasing lithospheric pressure with depth. The results from this study reveal that magma reservoirs at the crustal levels play a critical role in magma differentiation in a continental setting.

Received: 2014-1-27
Accepted: 2015-5-12
Published Online: 2015-11-24
Published in Print: 2015-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. On understanding the structure and composition of crystals
  2. Stable and metastable silicate liquid immiscibility in ferrobasalts
  3. When was the Earth’s conveyor belt set in motion?
  4. Trace element partitioning into sulfide: How lithophile elements become chalcophile and vice versa
  5. Petrology on Mars
  6. Hf and Nd isotope systematics of early Archean komatiites from surface sampling and ICDP drilling in the Barberton Greenstone Belt, South Africa
  7. Quasicrystals at extreme conditions: The role of pressure in stabilizing icosahedral Al63Cu24Fe13 at high temperature
  8. Tracking the thermal decomposition of plasma-sprayed hydroxylapatite
  9. Experimental constraints on bubble formation and growth during magma ascent: A review
  10. Ankerite grains with dolomite cores: A diffusion chronometer for low- to medium-grade regionally metamorphosed clastic sediments
  11. Crystal structure, high-pressure, and high-temperature behavior of carbonates in the K2Mg(CO3)2–Na2Mg(CO3)2 join
  12. Temperature micro-mapping in oscillatory-zoned chlorite: Application to study of a green-schist facies fault zone in the Pyrenean Axial Zone (Spain)
  13. Micro- and nano-characterization of Zn-clays in nonsulfide supergene ores of southern Peru
  14. Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+Cu content from the central Pacific Ocean
  15. The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting
  16. Weathering of the Ethiopian volcanic province: A new weathering index to characterize and compare soils
  17. Recommended mineral-melt partition coefficients for FRTEs (Cu), Ga, and Ge during mantle melting
  18. Tetrahedral plot diagram: A geometrical solution for quaternary systems
  19. Investigations on alunogen under Mars-relevant temperature conditions: An example for a single-crystal-to-single-crystal phase transition
  20. Crystallization of calcium oxalate hydrates by interaction of calcite marble with fungus Aspergillus niger
  21. Direct and indirect evidence for free oxygen (O2–) in MO-silicate glasses and melts (M = Mg, Ca, Pb)
  22. Effect of fluid composition on growth rate of monazite in quartzite at 1.0 GPa and 1000 °C
  23. Determination of the full elastic tensor of single crystals using shear wave velocities by Brillouin spectroscopy
  24. Temperature dependence of the velocity-density relation for liquid metals under high pressure: Implications for the Earth’s outer core
  25. Thermal, compositional, and compressional demagnetization of cementite
  26. The MnCO3-II high-pressure polymorph of rhodocrosite
  27. Lanthanide tetrads in normalized rare element patterns of zircon from the Koktokay No. 3 granitic pegmatite, Altay, NW China
  28. Hydrogrossular, Ca3Al2(SiO4)3–x(H4O4)x: An ab initio investigation of its structural and energetic properties
  29. High-pressure synthesis of skiagite-majorite garnet and investigation of its crystal structure
  30. Mineralogical evolution of Fe–Si-rich layers at the olivine-water interface during carbonation reactions
  31. High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover
  32. Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: I. Amphiboles
  33. Apexite, NaMg(PO4)·9H2O, a new struvite-type phase with a heteropolyhedral cluster
  34. The mechanism of infiltration of metamorphic fluids recorded by hydration and carbonation of epidote-amphibolite facies metabasaltic sills in the SW Scottish Highlands
  35. The axial ratio of hcp Fe and Fe–Ni–Si alloys to the conditions of Earth’s inner core
  36. Shock-induced mobilization of metal and sulfide in planetesimals: Evidence from the Buck Mountains 005 (L6 S4) dike-bearing chondrite
  37. The accretion and differentiation of Earth under oxidizing conditions
  38. Dislocation microstructures in simple-shear-deformed wadsleyite at transition-zone conditions: Weak-beam dark-field TEM characterization of dislocations on the (010) plane
  39. Chemical composition and crystal structure of merrillite from the Suizhou meteorite
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2015-4907/html
Button zum nach oben scrollen