Startseite Structural refinements of magnesite at very high pressure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structural refinements of magnesite at very high pressure

  • Guillaume Fiquet EMAIL logo , François Guyot , Martin Kunz , Jan Matas , Denis Andrault und Michael Hanfland
Veröffentlicht/Copyright: 28. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Unit-cell parameters of magnesite were measured between ambient pressure and 80 GPa using angle dispersive powder X-ray diffraction. The isothermal bulk modulus determined from a third order Birch Murnaghan equation of state is KT = 108(3) GPa with K'T = 5.0(2), and V0 = 279.2(2) Å3, in agreement with previously reported values. Combining this result with previous measurements, we show that magnesite with R3̄c structure is stable compared to the assemblage periclase + carbon dioxide at pressures and temperatures corresponding to the core-mantle boundary. Crystal structure refinements have also been carried out up to 80 GPa. The main structural change is a strong compression of the MgO6 octahedra with increasing pressure, largely reflected in the anisotropic compression of the c axis. This compression, however, tends to level off at around 50-60 GPa. On the other hand, the CO3 groups do not remain invariant since they undergo first a slight expansion and then a compression above the same threshold pressure of 60 GPa above which Mg-O bonds cannot compress further. Thus, in this structure-type, the energy gain due to a drastic volume reduction of the MgO6 octahedron compensates in a given pressure range for the energy cost of the small expansion of the CO3 carbonate unit.

Received: 2001-12-11
Accepted: 2002-4-18
Published Online: 2015-3-28
Published in Print: 2002-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Evidence for magmatic vapor deposition of anhydrite prior to the 1991 climactic eruption of Mount Pinatubo, Philippines
  2. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius
  3. Temperature-induced Al -zoning in hornblendes of the Fish Canyon magma, Colorado
  4. Analytical techniques for volatiles: A case study using intermediate (andesitic) glasses
  5. Anomalous optical properties of fibrous tremolite, actinolite, and ferro-actinolite
  6. Protoanthophyllite from three metamorphosed serpentinites
  7. Synthesis of beryllian sapphirine in the system MgO-BeO-Al2O3-SiO2-H2O and comparison with naturally occurring beryllian sapphirine and khmaralite. Part 1: Experiments, TEM, and XRD
  8. Intersite distribution of Fe2+ and Mg in the spinel (sensu stricto)–hercynite series by singlecrystal X-ray diffraction
  9. Structural relationships in (Mn1–xZnx)Mn2O4 (0 ≤ x ≤ 0.26): The “dragging effect” of the tetrahedron on the octahedron
  10. The grid-work texture of authigenic microcrystalline quartz in siliceous crust-type (SCT) mineralized horizons
  11. The crystal structure of vicanite-(Ce), a borosilicate showing an unusual (Si3B3O18)15– polyanion
  12. Submicrometer optical characterization of the grain boundary of optically active Cr3+ doped polycrystalline Al2O3 by near-field spectroscopy
  13. High-temperature, high-pressure optical spectroscopic study of ferric-iron-bearing tourmaline
  14. Infrared and Mössbauer study of Brazilian tourmalines from different geological environments
  15. Isothermal compression of staurolite: A single-crystal study
  16. Equation of state measurements of chlorite, pyrophyllite, and talc
  17. Structure change of Ca1–xSrxTiO3 perovskite with composition and pressure
  18. Mechanism of 2/1- to 3/2-mullite transformation at 1650 °C
  19. High-pressure deformation mechanism in scolecite: A combined computationalexperimental study
  20. Far infrared spectra of K+ in dioctahedral and trioctahedral mixed-layer minerals
  21. Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part I: Methods, results and comparison to experimental data
  22. Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: Main physical factors governing the OH vibrations
  23. On geological interpretations of crystal size distributions: Constant vs. proportionate growth
  24. Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure
  25. Cristobalite inclusions in the Tatahouine achondrite: Implications for shock conditions
  26. Letters. Natural occurrence of Fe2SiO4 -spinel in the shocked Umbarger L6 chondrite
  27. Structural refinements of magnesite at very high pressure
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2002-8-927/html
Button zum nach oben scrollen