Home Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: Main physical factors governing the OH vibrations
Article
Licensed
Unlicensed Requires Authentication

Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: Main physical factors governing the OH vibrations

  • Sara Martínez-Alonso EMAIL logo , James R. Rustad and Alexander F.H. Goetz
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

The physical factors responsible for the variability observed in OH infrared (IR) fundamentals in dioctahedral phyllosilicates, due to octahedral substitution of Al3+ by Mg2+, Fe2+, and Fe3+, are discussed here. The data analyzed consist of experimental frequencies as well as frequencies modeled using Density Functional Theory (DFT) calculations.

The charge of the octahedral cations surrounding the OH is one of the main factors affecting both the OH stretch and the in-plane bend; cationic electronegativity and ionic radius play important roles in the stretch and bend modes, respectively. The mass of the octahedral cations does not affect the OH fundamental vibrations.

The nature of the octahedral cations alone can explain most of the variability observed in the OH in-plane bend, making this fundamental vibration the most suitable for assessing octahedral composition. Discrepancies between modeled and experimental OH stretch frequencies indicate the existence of other factors governing this fundamental vibration. Further DFT calculations indicate that apical O atoms of the tetrahedral sheet with unsatisfied charges due to octahedral and/or tetrahedral substitutions can explain these discrepancies.

The modeling results are utilized to predict the frequency of the OH stretch and in-plane-bend combination band that occurs near 4545 cm-1 (2.2 μm) in phyllosilicates. This band can be observed in imaging spectrometer data, allowing for the detection and analysis of phyllosilicates and other minerals in large natural systems. The modeling results confirm that the variability observed in the combination band of dioctahedral phyllosilicates reflects octahedral and, to a certain degree, tetrahedral composition, but not interlayer composition.

Received: 2001-8-31
Accepted: 2002-4-24
Published Online: 2015-3-28
Published in Print: 2002-8-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Evidence for magmatic vapor deposition of anhydrite prior to the 1991 climactic eruption of Mount Pinatubo, Philippines
  2. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius
  3. Temperature-induced Al -zoning in hornblendes of the Fish Canyon magma, Colorado
  4. Analytical techniques for volatiles: A case study using intermediate (andesitic) glasses
  5. Anomalous optical properties of fibrous tremolite, actinolite, and ferro-actinolite
  6. Protoanthophyllite from three metamorphosed serpentinites
  7. Synthesis of beryllian sapphirine in the system MgO-BeO-Al2O3-SiO2-H2O and comparison with naturally occurring beryllian sapphirine and khmaralite. Part 1: Experiments, TEM, and XRD
  8. Intersite distribution of Fe2+ and Mg in the spinel (sensu stricto)–hercynite series by singlecrystal X-ray diffraction
  9. Structural relationships in (Mn1–xZnx)Mn2O4 (0 ≤ x ≤ 0.26): The “dragging effect” of the tetrahedron on the octahedron
  10. The grid-work texture of authigenic microcrystalline quartz in siliceous crust-type (SCT) mineralized horizons
  11. The crystal structure of vicanite-(Ce), a borosilicate showing an unusual (Si3B3O18)15– polyanion
  12. Submicrometer optical characterization of the grain boundary of optically active Cr3+ doped polycrystalline Al2O3 by near-field spectroscopy
  13. High-temperature, high-pressure optical spectroscopic study of ferric-iron-bearing tourmaline
  14. Infrared and Mössbauer study of Brazilian tourmalines from different geological environments
  15. Isothermal compression of staurolite: A single-crystal study
  16. Equation of state measurements of chlorite, pyrophyllite, and talc
  17. Structure change of Ca1–xSrxTiO3 perovskite with composition and pressure
  18. Mechanism of 2/1- to 3/2-mullite transformation at 1650 °C
  19. High-pressure deformation mechanism in scolecite: A combined computationalexperimental study
  20. Far infrared spectra of K+ in dioctahedral and trioctahedral mixed-layer minerals
  21. Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part I: Methods, results and comparison to experimental data
  22. Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: Main physical factors governing the OH vibrations
  23. On geological interpretations of crystal size distributions: Constant vs. proportionate growth
  24. Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: The occurrence and crystal structure
  25. Cristobalite inclusions in the Tatahouine achondrite: Implications for shock conditions
  26. Letters. Natural occurrence of Fe2SiO4 -spinel in the shocked Umbarger L6 chondrite
  27. Structural refinements of magnesite at very high pressure
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2002-8-922/html
Scroll to top button