Home Understanding uranium behaviour at the Askola uranium mineralization
Article
Licensed
Unlicensed Requires Authentication

Understanding uranium behaviour at the Askola uranium mineralization

  • Lalli Jokelainen , Mira Markovaara-Koivisto , David Read , Antero Lindberg , Marja Siitari-Kauppi and Karl-Heinz Hellmuth
Published/Copyright: November 23, 2010
Radiochimica Acta
From the journal Volume 98 Issue 9-11

Abstract

Understanding the behaviour of uranium is essential when assessing the safety of a spent nuclear fuel repository. The geochemical behaviour of uranium, including its reactive transport chemistry, is also a matter of concern when assessing the environmental impact of uranium mining. Subsurface uranium mobility is believed to be primarily controlled by dissolution and (co)-precipitation of uranium mineral solids and adsorption to mineral surfaces.

This paper describes a modelling exercise based on characterisation of samples taken from drilled cores at the uranium mineralization at Askola, Southern Finland. In the modelling exercise, current conditions are assumed to be oxidizing and saturated with groundwater. PHREEQC was used for modelling in conjunction with the Lawrence Livermore National Laboratory database, chosen for its extensive coverage of uranium species and mineral phases.

It is postulated that weathering processes near the surface have led to uranium dissolution from the primary ore, leaching out from the matrix and migrating along water-conducting fractures with subsequent re-diffusion into the rock matrix. Electron microscopy studies show that precipitated uranium occupies intra-granular fractures in feldspars and quartz. In addition, secondary uranium was found to be distributed within goethite nodules as well as around the margins of iron-containing minerals in the form of silicate and phosphate precipitates. Equilibrium modelling calculations predict that uranium would be precipitated as uranyl silicates, most likely soddyite and uranophane, in the prevailing chemical conditions beneath Lakeakallio hill.


* Correspondence address: University of Helsinki, Laboratory of Radiochemistry, Department of Chemis, P.O. Box 55, FIN-00014 Helsinki, Finnland,

Published Online: 2010-11-23
Published in Print: 2010-11

© by Oldenbourg Wissenschaftsverlag, Helsinki, Germany

Articles in the same Issue

  1. Preface
  2. Solubility of tetravalent actinides in alkaline CaCl2 solutions and formation of Ca4[An(OH)8]4+ complexes: A study of Np(IV) and Pu(IV) under reducing conditions and the systematic trend in the An(IV) series
  3. Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 °C
  4. Effect of reduction on the stability of Pu(VI) hydrolysis species
  5. Retention and redox behaviour of uranium(VI) by siderite (FeCO3)
  6. Neptunium(V) complexation by natural pyoverdins and related model compounds
  7. Complexation of Nd(III) with tetraborate ion and its effect on actinide(III) solubility in WIPP brine
  8. Complexation of Tc(IV) with acetate at varying ionic strengths
  9. Uranyl photochemistry: decarboxylation of gluconic acid
  10. Influence of Boom Clay organic matter on the adsorption of Eu3+ by illite – geochemical modelling using the component additivity approach
  11. The role of green rust in the migration of radionuclides: An overview of processes that can control mobility of radioactive elements in the environment using as examples Np, Se and Cr
  12. A comparative batch sorption and time-resolved laser fluorescence spectroscopy study on the sorption of Eu(III) and Cm(III) on synthetic and natural kaolinite
  13. U(VI) sorption on granite: prediction and experiments
  14. Quantum chemical study of inner-sphere complexes of trivalent lanthanide and actinide ions on the corundum (0001) surface
  15. Quantum chemical modeling of uranyl adsorption on mineral surfaces
  16. Interaction of PuO2 thin films with water
  17. Molecular interactions of plutonium(VI) with synthetic manganese-substituted goethite
  18. Chlorine speciation in nuclear graphite: consequences on temperature release and on leaching
  19. Chemical status of U(VI) in cemented waste forms under saline conditions
  20. Influence of iron redox transformations on plutonium sorption to sediments
  21. Modelling of a large-scale in-situ migration experiment with 14C-labelled natural organic matter in Boom Clay
  22. Sorption and diffusion of Eu in sedimentary rock in the presence of humic substance
  23. Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity
  24. Uranium(VI) diffusion in low-permeability subsurface materials
  25. Distribution of Cs and Am in the solution-bentonite colloids-granite ternary system: effect of addition order and sorption reversibility
  26. Mechanisms of plutonium sorption to mineral oxide surfaces: new insights with implications for colloid-enhanced migration
  27. Understanding uranium behaviour at the Askola uranium mineralization
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1524/ract.2010.1776/html
Scroll to top button