Molecular interactions of plutonium(VI) with synthetic manganese-substituted goethite
-
Yung-Jin Hu
, Luna Kestrel Schwaiger , Corwin H. Booth , Ravi K. Kukkadapu , Elena Cristiano , Daniel Kaplan and Heino Nitsche
Abstract
Plutonium(VI) sorption on the surface of well-characterized synthetic manganese-substituted goethite minerals (Fe1−xMnxOOH) was studied using X-ray absorption spectroscopy. We chose to study the influence of manganese as a minor component in goethite because goethite rarely exists as a pure phase in nature. Manganese X-ray absorption near-edge structure measurements indicated that essentially all the Mn in the goethite existed as Mn(III), even though Mn was added during mineral synthesis as Mn(II). Importantly, energy dispersive X-ray analysis demonstrated that Mn did not exist as discrete phases and that it was homogeneously mixed into the goethite to within the limit of detection of the method. Furthermore, Mössbauer spectra demonstrated that all Fe existed as Fe(III), with no Fe(II) present. Plutonium(VI) sorption experiments were conducted open to air and no attempt was made to exclude carbonate. The use of X-ray absorption spectroscopy allows us to directly and unambiguously measure the oxidation state of plutonium in situ at the mineral surface. Plutonium X-ray absorption near-edge structure measurements carried out on these samples showed that Pu(VI) was reduced to Pu(IV) upon contact with the mineral. This reduction appears to be strongly correlated with mineral solution pH, coinciding with pH transitions across the point of zero charge of the mineral. Furthermore, extended X-ray absorption fine structure measurements show evidence of direct plutonium binding to the metal surface as an inner-sphere complex. This combination of extensive mineral characterization and advanced spectroscopy suggests that sorption of the plutonium onto the surface of the mineral was followed by reduction of the plutonium at the surface of the mineral to form an inner-sphere complex. Because manganese is often found in the environment as a minor component associated with major mineral components, such as goethite, understanding the molecular-level interactions of plutonium with such substituted mineral phases is important for risk assessment purposes at radioactively contaminated sites and long-term underground radioactive waste repositories.
© by Oldenbourg Wissenschaftsverlag, Berkeley, Germany
Articles in the same Issue
- Preface
- Solubility of tetravalent actinides in alkaline CaCl2 solutions and formation of Ca4[An(OH)8]4+ complexes: A study of Np(IV) and Pu(IV) under reducing conditions and the systematic trend in the An(IV) series
- Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 °C
- Effect of reduction on the stability of Pu(VI) hydrolysis species
- Retention and redox behaviour of uranium(VI) by siderite (FeCO3)
- Neptunium(V) complexation by natural pyoverdins and related model compounds
- Complexation of Nd(III) with tetraborate ion and its effect on actinide(III) solubility in WIPP brine
- Complexation of Tc(IV) with acetate at varying ionic strengths
- Uranyl photochemistry: decarboxylation of gluconic acid
- Influence of Boom Clay organic matter on the adsorption of Eu3+ by illite – geochemical modelling using the component additivity approach
- The role of green rust in the migration of radionuclides: An overview of processes that can control mobility of radioactive elements in the environment using as examples Np, Se and Cr
- A comparative batch sorption and time-resolved laser fluorescence spectroscopy study on the sorption of Eu(III) and Cm(III) on synthetic and natural kaolinite
- U(VI) sorption on granite: prediction and experiments
- Quantum chemical study of inner-sphere complexes of trivalent lanthanide and actinide ions on the corundum (0001) surface
- Quantum chemical modeling of uranyl adsorption on mineral surfaces
- Interaction of PuO2 thin films with water
- Molecular interactions of plutonium(VI) with synthetic manganese-substituted goethite
- Chlorine speciation in nuclear graphite: consequences on temperature release and on leaching
- Chemical status of U(VI) in cemented waste forms under saline conditions
- Influence of iron redox transformations on plutonium sorption to sediments
- Modelling of a large-scale in-situ migration experiment with 14C-labelled natural organic matter in Boom Clay
- Sorption and diffusion of Eu in sedimentary rock in the presence of humic substance
- Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity
- Uranium(VI) diffusion in low-permeability subsurface materials
- Distribution of Cs and Am in the solution-bentonite colloids-granite ternary system: effect of addition order and sorption reversibility
- Mechanisms of plutonium sorption to mineral oxide surfaces: new insights with implications for colloid-enhanced migration
- Understanding uranium behaviour at the Askola uranium mineralization
Articles in the same Issue
- Preface
- Solubility of tetravalent actinides in alkaline CaCl2 solutions and formation of Ca4[An(OH)8]4+ complexes: A study of Np(IV) and Pu(IV) under reducing conditions and the systematic trend in the An(IV) series
- Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 °C
- Effect of reduction on the stability of Pu(VI) hydrolysis species
- Retention and redox behaviour of uranium(VI) by siderite (FeCO3)
- Neptunium(V) complexation by natural pyoverdins and related model compounds
- Complexation of Nd(III) with tetraborate ion and its effect on actinide(III) solubility in WIPP brine
- Complexation of Tc(IV) with acetate at varying ionic strengths
- Uranyl photochemistry: decarboxylation of gluconic acid
- Influence of Boom Clay organic matter on the adsorption of Eu3+ by illite – geochemical modelling using the component additivity approach
- The role of green rust in the migration of radionuclides: An overview of processes that can control mobility of radioactive elements in the environment using as examples Np, Se and Cr
- A comparative batch sorption and time-resolved laser fluorescence spectroscopy study on the sorption of Eu(III) and Cm(III) on synthetic and natural kaolinite
- U(VI) sorption on granite: prediction and experiments
- Quantum chemical study of inner-sphere complexes of trivalent lanthanide and actinide ions on the corundum (0001) surface
- Quantum chemical modeling of uranyl adsorption on mineral surfaces
- Interaction of PuO2 thin films with water
- Molecular interactions of plutonium(VI) with synthetic manganese-substituted goethite
- Chlorine speciation in nuclear graphite: consequences on temperature release and on leaching
- Chemical status of U(VI) in cemented waste forms under saline conditions
- Influence of iron redox transformations on plutonium sorption to sediments
- Modelling of a large-scale in-situ migration experiment with 14C-labelled natural organic matter in Boom Clay
- Sorption and diffusion of Eu in sedimentary rock in the presence of humic substance
- Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity
- Uranium(VI) diffusion in low-permeability subsurface materials
- Distribution of Cs and Am in the solution-bentonite colloids-granite ternary system: effect of addition order and sorption reversibility
- Mechanisms of plutonium sorption to mineral oxide surfaces: new insights with implications for colloid-enhanced migration
- Understanding uranium behaviour at the Askola uranium mineralization