Home Physical Sciences Interaction of PuO2 thin films with water
Article
Licensed
Unlicensed Requires Authentication

Interaction of PuO2 thin films with water

  • Alice Seibert , T. Gouder and F. Huber
Published/Copyright: November 23, 2010
Radiochimica Acta
From the journal Volume 98 Issue 9-11

Abstract

The surface adsorption and reaction of water with PuO2 thin films was investigated by X-ray and ultra-violet photoelectron spectroscopies (XPS and UPS, respectively). Initial motivation of the work was to further investigate the potential role of water in promoting the surface oxidation of PuO2 to Pu(IV)/Pu(V) mixed oxides formerly discussed in literature which may seriously impede the stability of spent nuclear fuel. Water may act as oxidant, as catalyst for the oxidation by O2, or as reactant leading to formation of hydrous oxide being oxidized by O2 instead of PuO2(cr). In order to obtain high water coverage under the experimentally required ultra-high vacuum conditions, water was adsorbed at low temperature (77 K) as thick ice film. Results were compared to thin water layers adsorbed at room temperature.

When adsorbed at 298 K, water dissociates forming a thin hydroxyl (OH) layer with small amounts of molecularly adsorbed water but no further reaction (in the sense of oxidation or reduction) is detected. At 77 K, water condenses as ice film. Here, a mainly non-dissociative adsorption of water is observed for layers ∼1 ML while for higher dosages, only molecular water/ice is observed and no significant contribution of OH (in the water layers) is detected. When exposing the sample to UV light while warming it up, the ice layer thaws and desorbs leaving behind a Pu2O3 surface. This surprising reduction of PuO2 stands in sharp contrast to the radiolytically driven oxidation of spent fuel in presence of water. It is discussed in terms of a photochemically driven interface reaction.


* Correspondence address: European Commission, JRC, Inst. For Transuranium Elements, Postfach 2340, 76125 Karlsruhe, Deutschland,

Published Online: 2010-11-23
Published in Print: 2010-11

© by Oldenbourg Wissenschaftsverlag, Karlsruhe, Germany

Articles in the same Issue

  1. Preface
  2. Solubility of tetravalent actinides in alkaline CaCl2 solutions and formation of Ca4[An(OH)8]4+ complexes: A study of Np(IV) and Pu(IV) under reducing conditions and the systematic trend in the An(IV) series
  3. Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 °C
  4. Effect of reduction on the stability of Pu(VI) hydrolysis species
  5. Retention and redox behaviour of uranium(VI) by siderite (FeCO3)
  6. Neptunium(V) complexation by natural pyoverdins and related model compounds
  7. Complexation of Nd(III) with tetraborate ion and its effect on actinide(III) solubility in WIPP brine
  8. Complexation of Tc(IV) with acetate at varying ionic strengths
  9. Uranyl photochemistry: decarboxylation of gluconic acid
  10. Influence of Boom Clay organic matter on the adsorption of Eu3+ by illite – geochemical modelling using the component additivity approach
  11. The role of green rust in the migration of radionuclides: An overview of processes that can control mobility of radioactive elements in the environment using as examples Np, Se and Cr
  12. A comparative batch sorption and time-resolved laser fluorescence spectroscopy study on the sorption of Eu(III) and Cm(III) on synthetic and natural kaolinite
  13. U(VI) sorption on granite: prediction and experiments
  14. Quantum chemical study of inner-sphere complexes of trivalent lanthanide and actinide ions on the corundum (0001) surface
  15. Quantum chemical modeling of uranyl adsorption on mineral surfaces
  16. Interaction of PuO2 thin films with water
  17. Molecular interactions of plutonium(VI) with synthetic manganese-substituted goethite
  18. Chlorine speciation in nuclear graphite: consequences on temperature release and on leaching
  19. Chemical status of U(VI) in cemented waste forms under saline conditions
  20. Influence of iron redox transformations on plutonium sorption to sediments
  21. Modelling of a large-scale in-situ migration experiment with 14C-labelled natural organic matter in Boom Clay
  22. Sorption and diffusion of Eu in sedimentary rock in the presence of humic substance
  23. Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity
  24. Uranium(VI) diffusion in low-permeability subsurface materials
  25. Distribution of Cs and Am in the solution-bentonite colloids-granite ternary system: effect of addition order and sorption reversibility
  26. Mechanisms of plutonium sorption to mineral oxide surfaces: new insights with implications for colloid-enhanced migration
  27. Understanding uranium behaviour at the Askola uranium mineralization
Downloaded on 20.12.2025 from https://www.degruyterbrill.com/document/doi/10.1524/ract.2010.1765/html
Scroll to top button