Startseite Synthesis and characterization of pure BiVO4 and zirconium-doped BiVO4 nanoparticles for supercapacitor and photocatalytic performance
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and characterization of pure BiVO4 and zirconium-doped BiVO4 nanoparticles for supercapacitor and photocatalytic performance

  • Premkumar Nallamuthu , Thiruramanathan Pandirengan , Vijayakumar Subbukalai , Kumara Vadivel Manoharan , Ponraj Thangaraj , Ramalingam Ammapatti EMAIL logo und Naina Mohammed Samu Shahabuddin ORCID logo EMAIL logo
Veröffentlicht/Copyright: 22. Oktober 2025

Abstract

This study presents the wet-chemical synthesis and characterization of Zr-doped BiVO4 ((Zr)x-(BiVO4)1-x, where x = wt.0 %, wt.2 %, wt.4 %, wt.6 %) nanoparticles, showcasing dual functionality in boosting supercapacitor applications and photocatalytic efficiency. X-ray diffraction (XRD) analysis verified zirconium incorporation into the BiVO4 lattice without altering its monoclinic crystal structure. Field Emission Scanning Electron Microscopy (FE-SEM) analysis revealed significant morphological alterations with varying zirconium concentrations, emphasizing variations in particle shape and size. Energy Dispersive X-ray Analysis (EDAX) validated the stoichiometric composition and confirmed the precise integration of zirconium into the BiVO4 lattice. Fourier Transform Infrared Spectroscopy (FT-IR) confirmed vibrational modes and X-ray Photoelectron Spectroscopy (XPS) revealed active sites and oxidation states driving the dual functionality nanomaterials. Diffuse Reflectance Spectroscopy (DRS) indicated that the band gap values decrease with an increase in dopant concentration. Raman spectra showed a characteristic peak at 827 cm−1, confirming the successful formation of BiVO4. The Zr-doped electrode achieved a specific capacity of 47 C g−1, surpassing among all other electrodes. Optimal wt.6 % Zr doping achieved 91.14 % methylene blue removal within 120 min of light exposure. Pseudo-first-order kinetics and reusability tests further confirmed that Zr incorporation enhances long-term stability and photocorrosion resistance through synergistic effects.


Corresponding author: Ramalingam Ammapatti and Naina Mohammed Samu Shahabuddin, Department of Physics, Government Arts College, Udumalpet, 642 126, Tiruppur, Tamil Nadu, India, E-mail: (Ramalingam A), (Naina Mohammed S.S.)

Acknowledgement

The authors express the gratitude to the Department of Physics, Government Arts College, Udumalpet – 642 126, Tamilnadu, India.

  1. Research ethics: The research article prepared is original work.

  2. Informed consent: Yes, with complete agreement with co-authors.

  3. Author contributions: N. Premkumar - Conceptualization, Experiments, Methodology, Software, Validation, Formal analysis, Investigation and Visualization. P. Thiruramanathan - Draft editing, Revision, Formal Analysis, Visualization, Software and Data Curation. S. Vijayakumar - Formal Analysis, Draft editing and Resources. M. Kumara Vadivel - Draft editing, Revision, Formal Analysis, Visualization, Software and Data Curation. T. Ponraj - Software and Draft editing. A. Ramalingam - Writing, Editing, Resources and SupervisionS.S. Naina Mohammed - Conceptualization, Experiments, Methodology, Formal Analysis, Investigation, Draft editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: No.

  6. Research funding: No.

  7. Data availability: Data will be made available on request.

References

1. Zhang, J.; Gu, M.; Chen, Xi Supercapacitors for Renewable Energy Applications: A Review. Micro. Nano. Eng. 2023, 21, 100229; https://doi.org/10.1016/j.mne.2023.100229.Suche in Google Scholar

2. Du, H.; Zhang, A.; Zhang, Q.; Sun, Y.; Zhu, H.; Wang, H.; Tan, Z.; Zhang, X.; Chen, G. Fabrication of Recoverable Bi2O2S/Bi5O7I/ZA Hydrogel Beads for Enhanced Photocatalytic Hg0 Removal in the Presence of H2O2. Sep. Purif. Technol. 2025, 359, 130597; https://doi.org/10.1016/j.seppur.2024.130597.Suche in Google Scholar

3. Han, Q.; Wang, L.; Li, J.; Dong, Y.; Ma, Y.; Zhang, J.; Yu, S. Built-in Field-Driven S-Scheme Boron-Doped Nanodiamond/TiO2(101)/MXene Photocatalyst for Efficient Antibiotic Elimination: Mechanisms and DFT Validation. Chem. Eng. J. 2025, 165290; https://doi.org/10.1016/j.cej.2025.165290.Suche in Google Scholar

4. Zhang, N.; Wang, B.; Hu, P.; Gao, Z.; Wang, H. Achieve High-Efficiency Photocatalytic Hydrogen Production of MCNTs-CdS/Pt/ZnFe2O4 Heterojunction Owing to Building Charge Transport Bridge. J. Environ. Chem. Eng. 2025, 13, 115800; https://doi.org/10.1016/j.jece.2025.115800.Suche in Google Scholar

5. Gunawan, M.; Priest, M.; Gunawan, D.; Nie, S.; Satriyatama, A.; Vongsvivut, J.; Hameiri, Z.; Zhang, Q.; Zhou, S.; Amal, R. Differentiating the Role of Ni and Fe in Nifeox co-catalyzed BiVO4 Photoanode for Water Oxidation. Energy Environ. Sustain. 2025, 1 (2), 100019; https://doi.org/10.1016/j.eesus.2025.100019.Suche in Google Scholar

6. Chen, F.; Jian, D.; Liu, S.; Li, S.; Wu, S.; Song, Y.; Liu, B. Energy-Storing WO3@BiVO4 Composite as Photocathodic Protective Coatings. Mater. Chem. Phys. 2023, 305, 127987; https://doi.org/10.1016/j.matchemphys.2023.127987.Suche in Google Scholar

7. El, O.; Otmane; H. Ladib; B. Vigolo; Jones, A.; M. Makha. Unveiling the Role of Doping and Intrinsic Vacancies in BiVO4 for Enhanced Photoelectrochemical Water Splitting: a first-principles Study. Int. J. Hydrogen Energy, 2025, 157: 150384, https://doi.org/10.1016/j.ijhydene.2025.150384.Suche in Google Scholar

8. Zhao, K.; Liu, X.; He, Q.; Zhou, W.; Yang, K.; Tao, L.; Fang, Li; Yu, C. Preparation and Characterization of Sm3+/Tm3+ Co-Doped BiVO4 Micro-squares and their Photocatalytic Performance for CO2 Reduction. J. Taiwan Inst. Chem. Eng. 2023, 144, 104737; https://doi.org/10.1016/j.jtice.2023.104737.Suche in Google Scholar

9. Tian, K.; Wu, L.; Han, T.; Gao, L.; Wang, P.; Chai, H.; Jin, J. Dual Modification of BiVO4 Photoanode by Rare Earth Element Neodymium Doping and Further NiFe2O4 Co-Catalyst Deposition for Efficient Photoelectrochemical Water Oxidation. J. Alloys Compd. 2022, 923, 166352; https://doi.org/10.1016/j.jallcom.2022.166352.Suche in Google Scholar

10. Hou, Z.; Yang, Q.; Lu, H.; Li, Y.; Zhao, Q. Toward Superior Electrochemical Capacitance with Hierarchically Nanostructured Polypyrrole/MXene Hybrid Hydrogel Modified by Lignosulfonate. ACS Omega 2025, 10 (27), 29476; https://doi.org/10.1021/acsomega.5c02827.Suche in Google Scholar PubMed PubMed Central

11. Abdellaoui, I.; Islam, M. M.; Remeika, M.; Kanno, S.; Okamoto, R.; Tajima, K.; Pawar, S. A.; Ng, Y. H.; Budich, C.; Maeda, T.; Wada, T.; Ikeda, S.; Sakura, T. Mechanism of Incorporation of Zirconium into BiVO4 Visible-Light Photocatalyst. J. Phys. Chem. C 2021, 125 (6), 3320–3326; https://doi.org/10.1021/acs.jpcc.1c00339.Suche in Google Scholar

12. Nikacevic, P.; Franziska, S.; Hegner; Galan-Mascaros, J. R.; Lopez, N. Influence of Oxygen Vacancies and Surface Facets on Water Oxidation Selectivity Toward Oxygen or Hydrogen Peroxide with BiVO4. ACS Catal. 2021, 11 (21), 13416–13422; https://doi.org/10.1021/acscatal.1c03256.Suche in Google Scholar

13. Dash, S.; Tripathy, S. P.; Subudhi, S.; Parida, K. A Visible Light-Responsive Mixed-Valence Bimetallic Eu–Zr MOF-based Nanoarchitecture Toward Efficacious H2O2 and H2 Production. Ind. Eng. Chem. Res. 2025, 64 (11), 5841–5853; https://doi.org/10.1021/acs.iecr.4c04234.Suche in Google Scholar

14. Mahi; T. Ahmed; Q. S. Hossain; S. S. Nishat; S. Ahmed; M. N. I. Khan; M. S. Bashar; Shirin, A. J.; Akhtar, U. S.; Jahan, S.; Chowdhury, F.; Hossain, K. S.; Irfan, A. Combined Experimental and First Principles Look into (Ce, Mo) Doped BiVO4. Heliyon, 2024, 10: e29408, https://doi.org/10.1016/j.heliyon.2024.e29408.Suche in Google Scholar PubMed PubMed Central

15. Zhang, W.; Liu, X.; Xiang, G. ;; Wang, X. Preparation of La Doped BiVO4 Under Weak Acid Environment to Enhance (040) Crystal Plane Exposure and Photocatalytic Activity: Characterization and Degradation Mechanism. Opt. Mater. 2024, 150, 115267; https://doi.org/10.1016/j.optmat.2024.115267.Suche in Google Scholar

16. Jin, Q.; Zuo, T.; Li, D.; Zhang, N.; Chen, G.; Yu, Z. Enhancement of Photovoltaic Efficiency in BiVO4 Films Through Zr4+-W6+ Co-Doping. Mater. Today Commun. 2024, 40, 110023; https://doi.org/10.1016/j.mtcomm.2024.110023.Suche in Google Scholar

17. Arunachalam, P.; Shaddad, M. N.; Amer, M. S.; Qadi, A. A. .L.- Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of Nifeooh Nanostructures. Alex. Eng. J. 2024, 99, 64–75; https://doi.org/10.1016/j.aej.2024.05.012.Suche in Google Scholar

18. Gofurov, S.; D. Ide; L. G. Oktariza; M. M. Islama; S. Ikeda; T. Sakurai. Zr-Doped BiVO4 Photoanode Deposited by Co-Sputtering to Enhance Photocatalytic Performance. 2024.10.2139/ssrn.4968610Suche in Google Scholar

19. Mansha; M. Salim; Tahir, I.; M. Farooq; Khalid, N. R.; S. Afsheen; M. S. Sultan; Nabil, A.-Z.; Ismail, W.; Arslan, M. Facile Hydrothermal Synthesis of BiVO4 Nanomaterials for Degradation of Industrial Waste. Heliyon, 2023, 9 (5): e15978, https://doi.org/10.1016/j.heliyon.2023.e15978.Suche in Google Scholar PubMed PubMed Central

20. Maziyar, K.; Zirak, M.; Alehdaghi, H.; Baghayeri, M.; Nodehi, M.; Baedi, J.; Rabiee, N. Toward Preparation of Large Scale and Uniform Mesoporous BiVO4 Thin Films with Enhanced Photostability for Solar Water Splitting. J. Alloys Compd. 2023, 969, 172409; https://doi.org/10.1016/j.jallcom.2023.172409.Suche in Google Scholar

21. Channei, D.; Thammaacheep, P.; Kerdphon, S.; Jannoey, P.; Khanitchaidecha, W.; Nakaruk, A. Domestic Microwave-Assisted Synthesis of Pd Doped-BiVO4 Photocatalysts. Inorg. Chem. Commun. 2023, 150, 110478; https://doi.org/10.1016/j.inoche.2023.110478.Suche in Google Scholar

22. Que, P. M.; Ngo, T. M.; Nguyen, V. H.; Xuan Nong, L.; Vo, D.-V. N.; Tran, T. V.; Nguyen, T.-D.; Bui, X.-T.; Nguyen, T. D. Facile Solvothermal Synthesis of Highly Active Monoclinic Scheelite BiVO4 for Photocatalytic Degradation of Methylene Blue Under White LED Light Irradiation. Arab. J. Chem. 2020, 13 (11), 8388–8394; https://doi.org/10.1016/j.arabjc.2020.05.029.Suche in Google Scholar

23. Naing, M. T.; Hwang, J. B.; Lee, J.; Kim, Y.; Jung, Y.; Lee, S. Synergistic Effect of Co Doping and Borate Impregnation on BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy 2024, 55, 234–242; https://doi.org/10.1016/j.ijhydene.2023.11.155.Suche in Google Scholar

24. Phuruangrat, A.; Wannapop, S.; Sakhon, T.; Kuntalue, B.; Thongtem, T.; Thongtem, S. Characterization and Photocatalytic Properties of BiVO4 Synthesized by Combustion Method. J. Mol. Struct. 2023, 1274, 134420; https://doi.org/10.1016/j.molstruc.2022.134420.Suche in Google Scholar

25. Mohamed, N. A.; Arzaee, N. A.; Noh, M. F. M.; Ismail, A. F.; Safaei, J.; Sagu, J. S.; Johan, M. R.; Teridi, M. A. M. Electrodeposition of BiVO4 with Needle-like Flower Architecture for High Performance Photoelectrochemical Splitting of Water. Ceram. Int. 2021, 47 (17), 24227–24239; https://doi.org/10.1016/j.ceramint.2021.05.134.Suche in Google Scholar

26. Chitare, Y. M.; Magdum, V. V.; Kulkarni, S. P.; Talekar, S. V.; Pawar, S. A.; Sawant, P. D.; Malavekar, D. B.; Patil, U. M.; Kim, J. H.; Ansar, S.; Gunjakar, J. L. Vertically Aligned Interlocked Tungsten Oxide Nanosheet Thin Film for Photocatalytic Application: Effect of Deposition Cycles. J. Mater. Sci.: Mater. Electron. 2024, 35, 1436; https://doi.org/10.1007/s10854-024-13184-1.Suche in Google Scholar

27. Nyabadza, A.; Eéanna, M. C.; Makhesana, M.; Heidarinassab, S.; Plouze, A.; Vazquez, M.; Brabazon, D. A Review of Physical, Chemical and Biological Synthesis Methods of Bimetallic Nanoparticles and Applications in Sensing, Water Treatment, Biomedicine, Catalysis and Hydrogen Storage. Adv. Colloid Interface Sci. 2023, 321, 103010; https://doi.org/10.1016/j.cis.2023.103010.Suche in Google Scholar PubMed

28. Sagadevan; Suresh; D. B. Khadka; S. Kato; T. Soga. Synthesis of V2O5 Nanowires Decorated with BiVO4 Nanoparticles via a Simple Spin-Coating Method, MRS Adv., 2024, 9: 1637-1642, https://doi.org/10.1557/s43580-024-00936-8.Suche in Google Scholar

29. Verma, A.; Tiwary, C. S.; Bhattacharya, J. Enhancement of Hydrophobic, Resistive Barrier and Anticorrosion Performance of Epoxy Coating with Addition of Clay-Modified Green silico-graphitic Carbon. Carbon Trends 2024, 15, 100347; https://doi.org/10.1016/j.cartre.2024.100347.Suche in Google Scholar

30. Ozcan, D. O.; Mert, C. H.; Bikem, O. Enhancing the Adsorption Capacity of Organic and Inorganic Pollutants onto Impregnated Olive Stone Derived Activated Carbon. Heliyon 2024, 10 (12), e32792; https://doi.org/10.1016/j.heliyon.2024.e32792.Suche in Google Scholar PubMed PubMed Central

31. Sivaraj, N.; Ammaiyappan, A. B. S. Enhancing the Photo-Electrochemical Hydrogen Evolution Efficiency Of Zirconium-Metal-Oxide Framework Heterojunction By Solvothermal Method. Emerg. Mater. 2025, 1–17; https://doi.org/10.1007/s42247-025-01117-5.Suche in Google Scholar

32. Sajid; M. Munir; S. B. Khan; Y. Javed; N. Amin; N. A. Shad; Z. Zhang; H. Zhai. Facile Synthesis of Se/BiVO4 Heterojunction Composite and Evaluation of Synergetic Reaction Mechanism for Efficient Photocatalytic Staining of Organic Dye Pollutants in Wastewater Under Visible Light. J. Mater. Sci.: Mater. Electron. 2020, 31: 19599–19612, https://doi.org/10.1007/s10854-020-04487-0.Suche in Google Scholar

33. Sajid, M. M.; Zhai, H.; Alomayri, T.; Khan, S. B.; Javed, Y.; Shad, N. A.; Ishaq, A. R.; Amin, N.; Zhang, Z. Platinum Doped Bismuth Vanadate (Pt/BiVO4) for Enhanced Photocatalytic Pollutant Degradation Using Visible Light Irradiation. J. Mater. Sci.: Mater. Electron. 2022, 33, 15116–15131; https://doi.org/10.1007/s10854-022-08431-2.Suche in Google Scholar

34. Pookmanee, P.; Kojinok, S.; Puntharod, R.; Sangsrichan, S.; Phanichphant, S. Preparation and Characterization of BiVO4 Powder by the Sol-Gel Method. Ferroelectrics 2013, 456 (1); https://doi.org/10.1080/00150193.2013.846197.Suche in Google Scholar

35. Nagarajan, K.; Perumalsamy, S. V.; Seenivasan, V.; Kulandaivel, J.; Paramasivam, T.; Krishnan, J. S. Preparation and Characterization of BiVO4-ZnO Nanocomposite as Heterogeneous Photocatalysts for Wastewater Treatment and Enhanced Electrode Performance. Ionics 2025, 31 (3), 2807–2820; https://doi.org/10.1007/s11581-025-06079-6.Suche in Google Scholar

36. Kumar, A.; Tyagi, D.; Varma, S.; Chand, H.; Krishnan, V.; Bhattacharyya, K.; Tyagi, A. K. Thermal Catalytic Mineralization of Ortho-Dichlorobenzene at Low Temperature: An in Situ FT-IR and XPS Mechanistic Investigation. Mater. Adv. 2024, 5, 1301–1331; https://doi.org/10.1039/d3ma00628j.Suche in Google Scholar

37. Azeez, S.; Shenbagaraman, R. Fourier Transform Infrared Spectroscopy in Characterization of Bionanocomposites. In In Bionanocomposites: Advances, Challenges, and Applications; Woodhead Publishing Series in Composites Science and Engineering: Chennai, Pondicherry, 2025; pp 209–227.10.1016/B978-0-443-22067-8.00008-3Suche in Google Scholar

38. Wang, M.; Zheng, H.; Liu, Q.; Niu, C.; Che, Y.; Dang, M. High Performance B Doped BiVO4 Photocatalyst with Visible Light Response by Citric Acid Complex Method. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 114, 74–79; https://doi.org/10.1016/j.saa.2013.05.032.Suche in Google Scholar PubMed

39. Nissi, J. R.; Sheebha, I.; Vidhya, B. Synthesis and Characterization of BiVO4/g-C3N4/GO Heterostructure for Photocatalytic Application: a Study on the Effect of the Ratio of g-C3N4/GO. J. Mater. Sci.: Mater. Electron. 2024, 35 (13), 906; https://doi.org/10.1007/s10854-024-12639-9.Suche in Google Scholar

40. Zhou, T.; Chen, Y. Dual Redox Reaction of V3+/V4+ and V4+/V5+ with in-situ Carbonization of Chitosan Quaternary Ammonium Promoting Sodium Storage Property and Safety of Na3V2 (PO4)3. Chem. Eng. J. 2024, 490, 151731; https://doi.org/10.1016/j.cej.2024.151731.Suche in Google Scholar

41. Zhang, Q.; Liu, G.; Liu, T. Oxygen Evolution Reaction (OER) Active Sites in BiVO4 Studied Using Density Functional Theory and XPS Experiments. Phys. Chem. Chem. Phys. 2024, 26 (3), 2580–2588; https://doi.org/10.1039/d3cp05579e.Suche in Google Scholar PubMed

42. Kholil, M. I. ,; Bhuiyan, M. T. H.; Atikur Rahman, M.; Ali, M. S.; Aftabuzzaman, M. Influence of Molybdenum and Technetium Doping on Visible Light Absorption, Optical and Electronic Properties of Lead-free Perovskite CsSnBr3 for Optoelectronic Applications. RSC Adv. 2021, 11, 2405–2414; https://doi.org/10.1039/d0ra09853a.Suche in Google Scholar PubMed PubMed Central

43. Zhu, Y.; Wu, R.; Li, A.; Hui, J.; Zhang, Z.; Shunhang, W. Constructing Surface Oxygen Vacancy in the [Bi2O2]2+ Layer Defects Mediated Bi2MoO6 Enhanced Visible Light Responsive Photocatalytic Activity. J. Chem. Phys. 2024, 161, 184707; https://doi.org/10.1063/5.0228635.Suche in Google Scholar PubMed

44. Vidhya, C.; Meera, B.; Naira, R. B.; Kurian, S. Enhanced Photocatalytic Hydrogen Evolution Through Suppressed Electron–Hole Recombination in Cs2AgBiBr6-NC/g-C3N4 Nanocomposites. Catal. Sci. Technol. 2024, 14, 746–757; https://doi.org/10.1039/d3cy01494k.Suche in Google Scholar

45. Boddula, R.; Lee, Y.-Yi; Masimukku, S.; Chang-Chien, G.-P.; Pothu, R.; Srivastava, R. K.; Sarangi, P. K.; Selvaraj, M.; Basumatary, S.; Al-Qahtani, N. Sustainable Hydrogen Production: Solar-Powered Biomass Conversion Explored Through (Photo) Electrochemical Advancements. Process Saf. Environ. Prot. 2024, 186, 1149–1168; https://doi.org/10.1016/j.psep.2024.04.068.Suche in Google Scholar

46. Ibrahim, M.; Mohamed, Z.; Ahmed, A. M.; Ghanem, M. A.; Mohamed, S.; Abd Elkhalik, S.; Fatma, M. Synthesis and Characterization of Mo-Doped Pbs Thin Films for Enhancing the Photocatalytic Hydrogen Production. Mater. Chem. Phys. 2024, 315, 128962; https://doi.org/10.1016/j.matchemphys.2024.128962.Suche in Google Scholar

47. Yi, Q.; Bao, H.; Li, H.; Song, Z.; Lyu, T.; Wei, Z. Enhanced Photochromism and Thermochromism in Zirconium Halide Perovskite Through Bismuth Doping and Thermal Recrystallization. Laser Photon. Rev. 2025; https://doi.org/10.1002/lpor.202401964.Suche in Google Scholar

48. Yin, X.; Sun, Y.; Geng, K.; Cui, Y.; Huang, J.; Hou, H. Ingenious Modulation of Third-Order Nonlinear Optical Response of Zr-MOFs Through Defect Engineering Based on a Mixed-Linker Strategy. Inorg. Chem. 2024, 63 (15), 6723–6733; https://doi.org/10.1021/acs.inorgchem.3c04651.Suche in Google Scholar PubMed

49. Lu, Y.; Cai, Y.; Zhang, S.; Zhuang, L.; Hu, B.; Wang, S.; Chen, J.; Wang, X. Application of Biochar-based Photocatalysts for Adsorption-(Photo) Degradation/reduction of Environmental Contaminants: Mechanism, Challenges and Perspective. Biochar 2022, 4, 45; https://doi.org/10.1007/s42773-022-00173-y.Suche in Google Scholar

50. Moscow; Subramanian; V. Kavinkumar; M. Sriramkumar; S. Prabath Reshmi Kalaikathir; K. Jothivenkatachalam; Y.-P. Fu; Srinivasan, A. Synthesis of Sn and Zr‐Doped BiVO4 Nanocatalyst with Enhanced Photocatalytic and Photoelectrochemical Activity. Chem. Sel., 2022, 7 (17): e202104000, https://doi.org/10.1002/slct.202104000.Suche in Google Scholar

51. Sarkar, D.; Bhui, A.; Maria, I.; Dutta, M.; Biswas, K. Hidden Structures: a Driving Factor to Achieve Low Thermal Conductivity and High Thermoelectric Performance. Chem. Soc. Rev. 2024, 53, 6100–6149; https://doi.org/10.1039/d4cs00038b.Suche in Google Scholar PubMed

52. Vijayakumar, S.; Dhakal, G.; Kim, S.-H.; Lee, J.; Lee, Y. R.; Shim, J.-J. Facile Synthesis of Zn-Co-S Nanostrip Cluster Arrays on Ni Foam for High-Performance Hybrid Supercapacitors. Nanomaterials 2021, 11 (12), 3209; https://doi.org/10.3390/nano11123209.Suche in Google Scholar PubMed PubMed Central

53. Murugan, C.; Subramani, K.; Subash, R.; Sathish, M.; Pandikumar, A. High-Performance High-Voltage Symmetric Supercapattery Based on a Graphitic Carbon Nitride/Bismuth Vanadate Nanocomposite. Energy Fuels 2020, 34 (12), 16858–16869; https://doi.org/10.1021/acs.energyfuels.0c03261.Suche in Google Scholar

54. Packiaraj, R.; Venkatesh, K. S.; Devendran, P.; Asath Bahadur, S.; Nallamuthu, N. Structural, Morphological and Electrochemical Studies of Nanostructured BiVO4 for Supercapacitor Application. Mater. Sci. Semicond. Process. 2020, 115, 105122; https://doi.org/10.1016/j.mssp.2020.105122.Suche in Google Scholar

55. Azadi, M.; Zarei-Jelyani, M.; Loghavi, M. M.; Babaiee, M.; Eqra, R. Electrochemical Investigations of Decorated Graphite Felt Electrodes with Nafion/TiO2 Nanoparticles for Vanadium Redox Flow Battery: Improving electro-catalytic Characteristics. Open Ceram. 2024, 20, 100703; https://doi.org/10.1016/j.oceram.2024.100703.Suche in Google Scholar

56. Jamshina Sanam, P. K.; Shah, M.; Pradyumnan, P. P. Multi-Cation Doped Cucro Crystallite Matrix: Exploring Bandgap Tunability Through Ni-Zn and ni-zn-mg Doping for Optoelectronic Application. Opt. Mater. 2024, 157, 116283; https://doi.org/10.1016/j.optmat.2024.116283.Suche in Google Scholar

57. Regmi, C.; Kshetri, Y. K.; Kim, T.-Ho; Ramesh, P. P.; Lee, S. W. Visible-Light-Induced Fe-Doped BiVO4 Photocatalyst for Contaminated Water Treatment. Mol. Catal. 2017, 432, 220–231; https://doi.org/10.1016/j.mcat.2017.02.004.Suche in Google Scholar

58. Regmi, C.; Kshetri, Y. K.; Kim, T.-Ho; Pandey, R. P.; Ray, S. K.; Lee, S. W. Fabrication of Ni-Doped BiVO4 Semiconductors with Enhanced Visible-Light Photocatalytic Performances for Wastewater Treatment. Appl. Surf. Sci. 2017, 413, 253–265; https://doi.org/10.1016/j.apsusc.2017.04.056.Suche in Google Scholar

59. Zhang, A.; Zhang, J. Effects of Europium Doping on the Photocatalytic Behavior of BiVO4. J. Hazard. Mater. 2010, 173, 265–272; https://doi.org/10.1016/j.jhazmat.2009.08.079.Suche in Google Scholar PubMed

60. Zhou, B.; Zhao, Xu; Liu, H.; Qu, J.; Huang, C. P. Visible-Light Sensitive Cobalt-Doped BiVO4 (Co-BiVO4) Photocatalytic Composites for the Degradation of Methylene Blue Dye in Dilute Aqueous Solutions. Appl. Catal. B Environ. 2010, 99 (1–2), 214–221; https://doi.org/10.1016/j.apcatb.2010.06.022.Suche in Google Scholar

61. Huyen; N. T. Khanh; T.-D. Pham; N. T. D. Cam; P. V. Quan; Nguyen, V. N.; Nguyen, T. H.; M. H. T. Tung; Van-Duong, D. Fabrication of Titanium Doped BiVO4 as a Novel Visible Light Driven Photocatalyst for Degradation of Residual Tetracycline Pollutant. Ceram. Int. 2021, 47 (24): 34253–34259, https://doi.org/10.1016/j.ceramint.2021.08.335.Suche in Google Scholar

62. Ma, C.; Lee, J.; Kim, Y.; Cheol Seo, W.; Jung, H.; Yang, W. Rational Design of α-Fe2O3 Nanocubes Supported BiVO4 Z-Scheme Photocatalyst for Photocatalytic Degradation of Antibiotic Under Visible Light. J. Colloid Interface Sci. 2020, 581, 514–522; https://doi.org/10.1016/j.jcis.2020.07.127.Suche in Google Scholar PubMed

63. Wu, J.; Wang, Y.; Liu, Z.; Yan, Y.; Zhu, Z. Preparation of Noble Metal Ag-Modified BiVO4 Nanosheets and a Study on the Degradation Performance of Tetracyclines. New J. Chem. 2020, 44, 13815–13823; https://doi.org/10.1039/d0nj03080e.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2025-0100).


Received: 2025-06-24
Accepted: 2025-09-08
Published Online: 2025-10-22

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2025-0100/pdf?lang=de
Button zum nach oben scrollen