Home Synthesis and characterization of pure BiVO4 and zirconium-doped BiVO4 nanoparticles for supercapacitor and photocatalytic performance
Article
Licensed
Unlicensed Requires Authentication

Synthesis and characterization of pure BiVO4 and zirconium-doped BiVO4 nanoparticles for supercapacitor and photocatalytic performance

  • Premkumar Nallamuthu , Thiruramanathan Pandirengan , Vijayakumar Subbukalai , Kumara Vadivel Manoharan , Ponraj Thangaraj , Ramalingam Ammapatti EMAIL logo and Naina Mohammed Samu Shahabuddin ORCID logo EMAIL logo
Published/Copyright: October 22, 2025

Abstract

This study presents the wet-chemical synthesis and characterization of Zr-doped BiVO4 ((Zr)x-(BiVO4)1-x, where x = wt.0 %, wt.2 %, wt.4 %, wt.6 %) nanoparticles, showcasing dual functionality in boosting supercapacitor applications and photocatalytic efficiency. X-ray diffraction (XRD) analysis verified zirconium incorporation into the BiVO4 lattice without altering its monoclinic crystal structure. Field Emission Scanning Electron Microscopy (FE-SEM) analysis revealed significant morphological alterations with varying zirconium concentrations, emphasizing variations in particle shape and size. Energy Dispersive X-ray Analysis (EDAX) validated the stoichiometric composition and confirmed the precise integration of zirconium into the BiVO4 lattice. Fourier Transform Infrared Spectroscopy (FT-IR) confirmed vibrational modes and X-ray Photoelectron Spectroscopy (XPS) revealed active sites and oxidation states driving the dual functionality nanomaterials. Diffuse Reflectance Spectroscopy (DRS) indicated that the band gap values decrease with an increase in dopant concentration. Raman spectra showed a characteristic peak at 827 cm−1, confirming the successful formation of BiVO4. The Zr-doped electrode achieved a specific capacity of 47 C g−1, surpassing among all other electrodes. Optimal wt.6 % Zr doping achieved 91.14 % methylene blue removal within 120 min of light exposure. Pseudo-first-order kinetics and reusability tests further confirmed that Zr incorporation enhances long-term stability and photocorrosion resistance through synergistic effects.


Corresponding author: Ramalingam Ammapatti and Naina Mohammed Samu Shahabuddin, Department of Physics, Government Arts College, Udumalpet, 642 126, Tiruppur, Tamil Nadu, India, E-mail: (Ramalingam A), (Naina Mohammed S.S.)

Acknowledgement

The authors express the gratitude to the Department of Physics, Government Arts College, Udumalpet – 642 126, Tamilnadu, India.

  1. Research ethics: The research article prepared is original work.

  2. Informed consent: Yes, with complete agreement with co-authors.

  3. Author contributions: N. Premkumar - Conceptualization, Experiments, Methodology, Software, Validation, Formal analysis, Investigation and Visualization. P. Thiruramanathan - Draft editing, Revision, Formal Analysis, Visualization, Software and Data Curation. S. Vijayakumar - Formal Analysis, Draft editing and Resources. M. Kumara Vadivel - Draft editing, Revision, Formal Analysis, Visualization, Software and Data Curation. T. Ponraj - Software and Draft editing. A. Ramalingam - Writing, Editing, Resources and SupervisionS.S. Naina Mohammed - Conceptualization, Experiments, Methodology, Formal Analysis, Investigation, Draft editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: No.

  6. Research funding: No.

  7. Data availability: Data will be made available on request.

References

1. Zhang, J.; Gu, M.; Chen, Xi Supercapacitors for Renewable Energy Applications: A Review. Micro. Nano. Eng. 2023, 21, 100229; https://doi.org/10.1016/j.mne.2023.100229.Search in Google Scholar

2. Du, H.; Zhang, A.; Zhang, Q.; Sun, Y.; Zhu, H.; Wang, H.; Tan, Z.; Zhang, X.; Chen, G. Fabrication of Recoverable Bi2O2S/Bi5O7I/ZA Hydrogel Beads for Enhanced Photocatalytic Hg0 Removal in the Presence of H2O2. Sep. Purif. Technol. 2025, 359, 130597; https://doi.org/10.1016/j.seppur.2024.130597.Search in Google Scholar

3. Han, Q.; Wang, L.; Li, J.; Dong, Y.; Ma, Y.; Zhang, J.; Yu, S. Built-in Field-Driven S-Scheme Boron-Doped Nanodiamond/TiO2(101)/MXene Photocatalyst for Efficient Antibiotic Elimination: Mechanisms and DFT Validation. Chem. Eng. J. 2025, 165290; https://doi.org/10.1016/j.cej.2025.165290.Search in Google Scholar

4. Zhang, N.; Wang, B.; Hu, P.; Gao, Z.; Wang, H. Achieve High-Efficiency Photocatalytic Hydrogen Production of MCNTs-CdS/Pt/ZnFe2O4 Heterojunction Owing to Building Charge Transport Bridge. J. Environ. Chem. Eng. 2025, 13, 115800; https://doi.org/10.1016/j.jece.2025.115800.Search in Google Scholar

5. Gunawan, M.; Priest, M.; Gunawan, D.; Nie, S.; Satriyatama, A.; Vongsvivut, J.; Hameiri, Z.; Zhang, Q.; Zhou, S.; Amal, R. Differentiating the Role of Ni and Fe in Nifeox co-catalyzed BiVO4 Photoanode for Water Oxidation. Energy Environ. Sustain. 2025, 1 (2), 100019; https://doi.org/10.1016/j.eesus.2025.100019.Search in Google Scholar

6. Chen, F.; Jian, D.; Liu, S.; Li, S.; Wu, S.; Song, Y.; Liu, B. Energy-Storing WO3@BiVO4 Composite as Photocathodic Protective Coatings. Mater. Chem. Phys. 2023, 305, 127987; https://doi.org/10.1016/j.matchemphys.2023.127987.Search in Google Scholar

7. El, O.; Otmane; H. Ladib; B. Vigolo; Jones, A.; M. Makha. Unveiling the Role of Doping and Intrinsic Vacancies in BiVO4 for Enhanced Photoelectrochemical Water Splitting: a first-principles Study. Int. J. Hydrogen Energy, 2025, 157: 150384, https://doi.org/10.1016/j.ijhydene.2025.150384.Search in Google Scholar

8. Zhao, K.; Liu, X.; He, Q.; Zhou, W.; Yang, K.; Tao, L.; Fang, Li; Yu, C. Preparation and Characterization of Sm3+/Tm3+ Co-Doped BiVO4 Micro-squares and their Photocatalytic Performance for CO2 Reduction. J. Taiwan Inst. Chem. Eng. 2023, 144, 104737; https://doi.org/10.1016/j.jtice.2023.104737.Search in Google Scholar

9. Tian, K.; Wu, L.; Han, T.; Gao, L.; Wang, P.; Chai, H.; Jin, J. Dual Modification of BiVO4 Photoanode by Rare Earth Element Neodymium Doping and Further NiFe2O4 Co-Catalyst Deposition for Efficient Photoelectrochemical Water Oxidation. J. Alloys Compd. 2022, 923, 166352; https://doi.org/10.1016/j.jallcom.2022.166352.Search in Google Scholar

10. Hou, Z.; Yang, Q.; Lu, H.; Li, Y.; Zhao, Q. Toward Superior Electrochemical Capacitance with Hierarchically Nanostructured Polypyrrole/MXene Hybrid Hydrogel Modified by Lignosulfonate. ACS Omega 2025, 10 (27), 29476; https://doi.org/10.1021/acsomega.5c02827.Search in Google Scholar PubMed PubMed Central

11. Abdellaoui, I.; Islam, M. M.; Remeika, M.; Kanno, S.; Okamoto, R.; Tajima, K.; Pawar, S. A.; Ng, Y. H.; Budich, C.; Maeda, T.; Wada, T.; Ikeda, S.; Sakura, T. Mechanism of Incorporation of Zirconium into BiVO4 Visible-Light Photocatalyst. J. Phys. Chem. C 2021, 125 (6), 3320–3326; https://doi.org/10.1021/acs.jpcc.1c00339.Search in Google Scholar

12. Nikacevic, P.; Franziska, S.; Hegner; Galan-Mascaros, J. R.; Lopez, N. Influence of Oxygen Vacancies and Surface Facets on Water Oxidation Selectivity Toward Oxygen or Hydrogen Peroxide with BiVO4. ACS Catal. 2021, 11 (21), 13416–13422; https://doi.org/10.1021/acscatal.1c03256.Search in Google Scholar

13. Dash, S.; Tripathy, S. P.; Subudhi, S.; Parida, K. A Visible Light-Responsive Mixed-Valence Bimetallic Eu–Zr MOF-based Nanoarchitecture Toward Efficacious H2O2 and H2 Production. Ind. Eng. Chem. Res. 2025, 64 (11), 5841–5853; https://doi.org/10.1021/acs.iecr.4c04234.Search in Google Scholar

14. Mahi; T. Ahmed; Q. S. Hossain; S. S. Nishat; S. Ahmed; M. N. I. Khan; M. S. Bashar; Shirin, A. J.; Akhtar, U. S.; Jahan, S.; Chowdhury, F.; Hossain, K. S.; Irfan, A. Combined Experimental and First Principles Look into (Ce, Mo) Doped BiVO4. Heliyon, 2024, 10: e29408, https://doi.org/10.1016/j.heliyon.2024.e29408.Search in Google Scholar PubMed PubMed Central

15. Zhang, W.; Liu, X.; Xiang, G. ;; Wang, X. Preparation of La Doped BiVO4 Under Weak Acid Environment to Enhance (040) Crystal Plane Exposure and Photocatalytic Activity: Characterization and Degradation Mechanism. Opt. Mater. 2024, 150, 115267; https://doi.org/10.1016/j.optmat.2024.115267.Search in Google Scholar

16. Jin, Q.; Zuo, T.; Li, D.; Zhang, N.; Chen, G.; Yu, Z. Enhancement of Photovoltaic Efficiency in BiVO4 Films Through Zr4+-W6+ Co-Doping. Mater. Today Commun. 2024, 40, 110023; https://doi.org/10.1016/j.mtcomm.2024.110023.Search in Google Scholar

17. Arunachalam, P.; Shaddad, M. N.; Amer, M. S.; Qadi, A. A. .L.- Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of Nifeooh Nanostructures. Alex. Eng. J. 2024, 99, 64–75; https://doi.org/10.1016/j.aej.2024.05.012.Search in Google Scholar

18. Gofurov, S.; D. Ide; L. G. Oktariza; M. M. Islama; S. Ikeda; T. Sakurai. Zr-Doped BiVO4 Photoanode Deposited by Co-Sputtering to Enhance Photocatalytic Performance. 2024.10.2139/ssrn.4968610Search in Google Scholar

19. Mansha; M. Salim; Tahir, I.; M. Farooq; Khalid, N. R.; S. Afsheen; M. S. Sultan; Nabil, A.-Z.; Ismail, W.; Arslan, M. Facile Hydrothermal Synthesis of BiVO4 Nanomaterials for Degradation of Industrial Waste. Heliyon, 2023, 9 (5): e15978, https://doi.org/10.1016/j.heliyon.2023.e15978.Search in Google Scholar PubMed PubMed Central

20. Maziyar, K.; Zirak, M.; Alehdaghi, H.; Baghayeri, M.; Nodehi, M.; Baedi, J.; Rabiee, N. Toward Preparation of Large Scale and Uniform Mesoporous BiVO4 Thin Films with Enhanced Photostability for Solar Water Splitting. J. Alloys Compd. 2023, 969, 172409; https://doi.org/10.1016/j.jallcom.2023.172409.Search in Google Scholar

21. Channei, D.; Thammaacheep, P.; Kerdphon, S.; Jannoey, P.; Khanitchaidecha, W.; Nakaruk, A. Domestic Microwave-Assisted Synthesis of Pd Doped-BiVO4 Photocatalysts. Inorg. Chem. Commun. 2023, 150, 110478; https://doi.org/10.1016/j.inoche.2023.110478.Search in Google Scholar

22. Que, P. M.; Ngo, T. M.; Nguyen, V. H.; Xuan Nong, L.; Vo, D.-V. N.; Tran, T. V.; Nguyen, T.-D.; Bui, X.-T.; Nguyen, T. D. Facile Solvothermal Synthesis of Highly Active Monoclinic Scheelite BiVO4 for Photocatalytic Degradation of Methylene Blue Under White LED Light Irradiation. Arab. J. Chem. 2020, 13 (11), 8388–8394; https://doi.org/10.1016/j.arabjc.2020.05.029.Search in Google Scholar

23. Naing, M. T.; Hwang, J. B.; Lee, J.; Kim, Y.; Jung, Y.; Lee, S. Synergistic Effect of Co Doping and Borate Impregnation on BiVO4 Photoanode for Efficient Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy 2024, 55, 234–242; https://doi.org/10.1016/j.ijhydene.2023.11.155.Search in Google Scholar

24. Phuruangrat, A.; Wannapop, S.; Sakhon, T.; Kuntalue, B.; Thongtem, T.; Thongtem, S. Characterization and Photocatalytic Properties of BiVO4 Synthesized by Combustion Method. J. Mol. Struct. 2023, 1274, 134420; https://doi.org/10.1016/j.molstruc.2022.134420.Search in Google Scholar

25. Mohamed, N. A.; Arzaee, N. A.; Noh, M. F. M.; Ismail, A. F.; Safaei, J.; Sagu, J. S.; Johan, M. R.; Teridi, M. A. M. Electrodeposition of BiVO4 with Needle-like Flower Architecture for High Performance Photoelectrochemical Splitting of Water. Ceram. Int. 2021, 47 (17), 24227–24239; https://doi.org/10.1016/j.ceramint.2021.05.134.Search in Google Scholar

26. Chitare, Y. M.; Magdum, V. V.; Kulkarni, S. P.; Talekar, S. V.; Pawar, S. A.; Sawant, P. D.; Malavekar, D. B.; Patil, U. M.; Kim, J. H.; Ansar, S.; Gunjakar, J. L. Vertically Aligned Interlocked Tungsten Oxide Nanosheet Thin Film for Photocatalytic Application: Effect of Deposition Cycles. J. Mater. Sci.: Mater. Electron. 2024, 35, 1436; https://doi.org/10.1007/s10854-024-13184-1.Search in Google Scholar

27. Nyabadza, A.; Eéanna, M. C.; Makhesana, M.; Heidarinassab, S.; Plouze, A.; Vazquez, M.; Brabazon, D. A Review of Physical, Chemical and Biological Synthesis Methods of Bimetallic Nanoparticles and Applications in Sensing, Water Treatment, Biomedicine, Catalysis and Hydrogen Storage. Adv. Colloid Interface Sci. 2023, 321, 103010; https://doi.org/10.1016/j.cis.2023.103010.Search in Google Scholar PubMed

28. Sagadevan; Suresh; D. B. Khadka; S. Kato; T. Soga. Synthesis of V2O5 Nanowires Decorated with BiVO4 Nanoparticles via a Simple Spin-Coating Method, MRS Adv., 2024, 9: 1637-1642, https://doi.org/10.1557/s43580-024-00936-8.Search in Google Scholar

29. Verma, A.; Tiwary, C. S.; Bhattacharya, J. Enhancement of Hydrophobic, Resistive Barrier and Anticorrosion Performance of Epoxy Coating with Addition of Clay-Modified Green silico-graphitic Carbon. Carbon Trends 2024, 15, 100347; https://doi.org/10.1016/j.cartre.2024.100347.Search in Google Scholar

30. Ozcan, D. O.; Mert, C. H.; Bikem, O. Enhancing the Adsorption Capacity of Organic and Inorganic Pollutants onto Impregnated Olive Stone Derived Activated Carbon. Heliyon 2024, 10 (12), e32792; https://doi.org/10.1016/j.heliyon.2024.e32792.Search in Google Scholar PubMed PubMed Central

31. Sivaraj, N.; Ammaiyappan, A. B. S. Enhancing the Photo-Electrochemical Hydrogen Evolution Efficiency Of Zirconium-Metal-Oxide Framework Heterojunction By Solvothermal Method. Emerg. Mater. 2025, 1–17; https://doi.org/10.1007/s42247-025-01117-5.Search in Google Scholar

32. Sajid; M. Munir; S. B. Khan; Y. Javed; N. Amin; N. A. Shad; Z. Zhang; H. Zhai. Facile Synthesis of Se/BiVO4 Heterojunction Composite and Evaluation of Synergetic Reaction Mechanism for Efficient Photocatalytic Staining of Organic Dye Pollutants in Wastewater Under Visible Light. J. Mater. Sci.: Mater. Electron. 2020, 31: 19599–19612, https://doi.org/10.1007/s10854-020-04487-0.Search in Google Scholar

33. Sajid, M. M.; Zhai, H.; Alomayri, T.; Khan, S. B.; Javed, Y.; Shad, N. A.; Ishaq, A. R.; Amin, N.; Zhang, Z. Platinum Doped Bismuth Vanadate (Pt/BiVO4) for Enhanced Photocatalytic Pollutant Degradation Using Visible Light Irradiation. J. Mater. Sci.: Mater. Electron. 2022, 33, 15116–15131; https://doi.org/10.1007/s10854-022-08431-2.Search in Google Scholar

34. Pookmanee, P.; Kojinok, S.; Puntharod, R.; Sangsrichan, S.; Phanichphant, S. Preparation and Characterization of BiVO4 Powder by the Sol-Gel Method. Ferroelectrics 2013, 456 (1); https://doi.org/10.1080/00150193.2013.846197.Search in Google Scholar

35. Nagarajan, K.; Perumalsamy, S. V.; Seenivasan, V.; Kulandaivel, J.; Paramasivam, T.; Krishnan, J. S. Preparation and Characterization of BiVO4-ZnO Nanocomposite as Heterogeneous Photocatalysts for Wastewater Treatment and Enhanced Electrode Performance. Ionics 2025, 31 (3), 2807–2820; https://doi.org/10.1007/s11581-025-06079-6.Search in Google Scholar

36. Kumar, A.; Tyagi, D.; Varma, S.; Chand, H.; Krishnan, V.; Bhattacharyya, K.; Tyagi, A. K. Thermal Catalytic Mineralization of Ortho-Dichlorobenzene at Low Temperature: An in Situ FT-IR and XPS Mechanistic Investigation. Mater. Adv. 2024, 5, 1301–1331; https://doi.org/10.1039/d3ma00628j.Search in Google Scholar

37. Azeez, S.; Shenbagaraman, R. Fourier Transform Infrared Spectroscopy in Characterization of Bionanocomposites. In In Bionanocomposites: Advances, Challenges, and Applications; Woodhead Publishing Series in Composites Science and Engineering: Chennai, Pondicherry, 2025; pp 209–227.10.1016/B978-0-443-22067-8.00008-3Search in Google Scholar

38. Wang, M.; Zheng, H.; Liu, Q.; Niu, C.; Che, Y.; Dang, M. High Performance B Doped BiVO4 Photocatalyst with Visible Light Response by Citric Acid Complex Method. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 114, 74–79; https://doi.org/10.1016/j.saa.2013.05.032.Search in Google Scholar PubMed

39. Nissi, J. R.; Sheebha, I.; Vidhya, B. Synthesis and Characterization of BiVO4/g-C3N4/GO Heterostructure for Photocatalytic Application: a Study on the Effect of the Ratio of g-C3N4/GO. J. Mater. Sci.: Mater. Electron. 2024, 35 (13), 906; https://doi.org/10.1007/s10854-024-12639-9.Search in Google Scholar

40. Zhou, T.; Chen, Y. Dual Redox Reaction of V3+/V4+ and V4+/V5+ with in-situ Carbonization of Chitosan Quaternary Ammonium Promoting Sodium Storage Property and Safety of Na3V2 (PO4)3. Chem. Eng. J. 2024, 490, 151731; https://doi.org/10.1016/j.cej.2024.151731.Search in Google Scholar

41. Zhang, Q.; Liu, G.; Liu, T. Oxygen Evolution Reaction (OER) Active Sites in BiVO4 Studied Using Density Functional Theory and XPS Experiments. Phys. Chem. Chem. Phys. 2024, 26 (3), 2580–2588; https://doi.org/10.1039/d3cp05579e.Search in Google Scholar PubMed

42. Kholil, M. I. ,; Bhuiyan, M. T. H.; Atikur Rahman, M.; Ali, M. S.; Aftabuzzaman, M. Influence of Molybdenum and Technetium Doping on Visible Light Absorption, Optical and Electronic Properties of Lead-free Perovskite CsSnBr3 for Optoelectronic Applications. RSC Adv. 2021, 11, 2405–2414; https://doi.org/10.1039/d0ra09853a.Search in Google Scholar PubMed PubMed Central

43. Zhu, Y.; Wu, R.; Li, A.; Hui, J.; Zhang, Z.; Shunhang, W. Constructing Surface Oxygen Vacancy in the [Bi2O2]2+ Layer Defects Mediated Bi2MoO6 Enhanced Visible Light Responsive Photocatalytic Activity. J. Chem. Phys. 2024, 161, 184707; https://doi.org/10.1063/5.0228635.Search in Google Scholar PubMed

44. Vidhya, C.; Meera, B.; Naira, R. B.; Kurian, S. Enhanced Photocatalytic Hydrogen Evolution Through Suppressed Electron–Hole Recombination in Cs2AgBiBr6-NC/g-C3N4 Nanocomposites. Catal. Sci. Technol. 2024, 14, 746–757; https://doi.org/10.1039/d3cy01494k.Search in Google Scholar

45. Boddula, R.; Lee, Y.-Yi; Masimukku, S.; Chang-Chien, G.-P.; Pothu, R.; Srivastava, R. K.; Sarangi, P. K.; Selvaraj, M.; Basumatary, S.; Al-Qahtani, N. Sustainable Hydrogen Production: Solar-Powered Biomass Conversion Explored Through (Photo) Electrochemical Advancements. Process Saf. Environ. Prot. 2024, 186, 1149–1168; https://doi.org/10.1016/j.psep.2024.04.068.Search in Google Scholar

46. Ibrahim, M.; Mohamed, Z.; Ahmed, A. M.; Ghanem, M. A.; Mohamed, S.; Abd Elkhalik, S.; Fatma, M. Synthesis and Characterization of Mo-Doped Pbs Thin Films for Enhancing the Photocatalytic Hydrogen Production. Mater. Chem. Phys. 2024, 315, 128962; https://doi.org/10.1016/j.matchemphys.2024.128962.Search in Google Scholar

47. Yi, Q.; Bao, H.; Li, H.; Song, Z.; Lyu, T.; Wei, Z. Enhanced Photochromism and Thermochromism in Zirconium Halide Perovskite Through Bismuth Doping and Thermal Recrystallization. Laser Photon. Rev. 2025; https://doi.org/10.1002/lpor.202401964.Search in Google Scholar

48. Yin, X.; Sun, Y.; Geng, K.; Cui, Y.; Huang, J.; Hou, H. Ingenious Modulation of Third-Order Nonlinear Optical Response of Zr-MOFs Through Defect Engineering Based on a Mixed-Linker Strategy. Inorg. Chem. 2024, 63 (15), 6723–6733; https://doi.org/10.1021/acs.inorgchem.3c04651.Search in Google Scholar PubMed

49. Lu, Y.; Cai, Y.; Zhang, S.; Zhuang, L.; Hu, B.; Wang, S.; Chen, J.; Wang, X. Application of Biochar-based Photocatalysts for Adsorption-(Photo) Degradation/reduction of Environmental Contaminants: Mechanism, Challenges and Perspective. Biochar 2022, 4, 45; https://doi.org/10.1007/s42773-022-00173-y.Search in Google Scholar

50. Moscow; Subramanian; V. Kavinkumar; M. Sriramkumar; S. Prabath Reshmi Kalaikathir; K. Jothivenkatachalam; Y.-P. Fu; Srinivasan, A. Synthesis of Sn and Zr‐Doped BiVO4 Nanocatalyst with Enhanced Photocatalytic and Photoelectrochemical Activity. Chem. Sel., 2022, 7 (17): e202104000, https://doi.org/10.1002/slct.202104000.Search in Google Scholar

51. Sarkar, D.; Bhui, A.; Maria, I.; Dutta, M.; Biswas, K. Hidden Structures: a Driving Factor to Achieve Low Thermal Conductivity and High Thermoelectric Performance. Chem. Soc. Rev. 2024, 53, 6100–6149; https://doi.org/10.1039/d4cs00038b.Search in Google Scholar PubMed

52. Vijayakumar, S.; Dhakal, G.; Kim, S.-H.; Lee, J.; Lee, Y. R.; Shim, J.-J. Facile Synthesis of Zn-Co-S Nanostrip Cluster Arrays on Ni Foam for High-Performance Hybrid Supercapacitors. Nanomaterials 2021, 11 (12), 3209; https://doi.org/10.3390/nano11123209.Search in Google Scholar PubMed PubMed Central

53. Murugan, C.; Subramani, K.; Subash, R.; Sathish, M.; Pandikumar, A. High-Performance High-Voltage Symmetric Supercapattery Based on a Graphitic Carbon Nitride/Bismuth Vanadate Nanocomposite. Energy Fuels 2020, 34 (12), 16858–16869; https://doi.org/10.1021/acs.energyfuels.0c03261.Search in Google Scholar

54. Packiaraj, R.; Venkatesh, K. S.; Devendran, P.; Asath Bahadur, S.; Nallamuthu, N. Structural, Morphological and Electrochemical Studies of Nanostructured BiVO4 for Supercapacitor Application. Mater. Sci. Semicond. Process. 2020, 115, 105122; https://doi.org/10.1016/j.mssp.2020.105122.Search in Google Scholar

55. Azadi, M.; Zarei-Jelyani, M.; Loghavi, M. M.; Babaiee, M.; Eqra, R. Electrochemical Investigations of Decorated Graphite Felt Electrodes with Nafion/TiO2 Nanoparticles for Vanadium Redox Flow Battery: Improving electro-catalytic Characteristics. Open Ceram. 2024, 20, 100703; https://doi.org/10.1016/j.oceram.2024.100703.Search in Google Scholar

56. Jamshina Sanam, P. K.; Shah, M.; Pradyumnan, P. P. Multi-Cation Doped Cucro Crystallite Matrix: Exploring Bandgap Tunability Through Ni-Zn and ni-zn-mg Doping for Optoelectronic Application. Opt. Mater. 2024, 157, 116283; https://doi.org/10.1016/j.optmat.2024.116283.Search in Google Scholar

57. Regmi, C.; Kshetri, Y. K.; Kim, T.-Ho; Ramesh, P. P.; Lee, S. W. Visible-Light-Induced Fe-Doped BiVO4 Photocatalyst for Contaminated Water Treatment. Mol. Catal. 2017, 432, 220–231; https://doi.org/10.1016/j.mcat.2017.02.004.Search in Google Scholar

58. Regmi, C.; Kshetri, Y. K.; Kim, T.-Ho; Pandey, R. P.; Ray, S. K.; Lee, S. W. Fabrication of Ni-Doped BiVO4 Semiconductors with Enhanced Visible-Light Photocatalytic Performances for Wastewater Treatment. Appl. Surf. Sci. 2017, 413, 253–265; https://doi.org/10.1016/j.apsusc.2017.04.056.Search in Google Scholar

59. Zhang, A.; Zhang, J. Effects of Europium Doping on the Photocatalytic Behavior of BiVO4. J. Hazard. Mater. 2010, 173, 265–272; https://doi.org/10.1016/j.jhazmat.2009.08.079.Search in Google Scholar PubMed

60. Zhou, B.; Zhao, Xu; Liu, H.; Qu, J.; Huang, C. P. Visible-Light Sensitive Cobalt-Doped BiVO4 (Co-BiVO4) Photocatalytic Composites for the Degradation of Methylene Blue Dye in Dilute Aqueous Solutions. Appl. Catal. B Environ. 2010, 99 (1–2), 214–221; https://doi.org/10.1016/j.apcatb.2010.06.022.Search in Google Scholar

61. Huyen; N. T. Khanh; T.-D. Pham; N. T. D. Cam; P. V. Quan; Nguyen, V. N.; Nguyen, T. H.; M. H. T. Tung; Van-Duong, D. Fabrication of Titanium Doped BiVO4 as a Novel Visible Light Driven Photocatalyst for Degradation of Residual Tetracycline Pollutant. Ceram. Int. 2021, 47 (24): 34253–34259, https://doi.org/10.1016/j.ceramint.2021.08.335.Search in Google Scholar

62. Ma, C.; Lee, J.; Kim, Y.; Cheol Seo, W.; Jung, H.; Yang, W. Rational Design of α-Fe2O3 Nanocubes Supported BiVO4 Z-Scheme Photocatalyst for Photocatalytic Degradation of Antibiotic Under Visible Light. J. Colloid Interface Sci. 2020, 581, 514–522; https://doi.org/10.1016/j.jcis.2020.07.127.Search in Google Scholar PubMed

63. Wu, J.; Wang, Y.; Liu, Z.; Yan, Y.; Zhu, Z. Preparation of Noble Metal Ag-Modified BiVO4 Nanosheets and a Study on the Degradation Performance of Tetracyclines. New J. Chem. 2020, 44, 13815–13823; https://doi.org/10.1039/d0nj03080e.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2025-0100).


Received: 2025-06-24
Accepted: 2025-09-08
Published Online: 2025-10-22

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2025-0100/pdf
Scroll to top button