Temporal airy pulses efficiency in thin glass dicing
-
Madalin-Stefan Radu
, Cristian Sarpe
, Elena Ramela Ciobotea
, Bastian Zielinski
, Radu Constantinescu
, Thomas Baumertund Camilo Florian
Abstract
Ultrashort pulse laser sources are useful tools for micro- and nano-processing large band gap dielectric materials. One of the biggest advantages of these pulses is the possibility to reach high intensity peaks that promote absorption even in materials transparent to the laser wavelength. In addition, if the pulse temporal distribution is modified, energy absorption enables the ablation of small diameter holes with large depths. In this work, we present preliminary results that implement three types of pulses as precursors for glass dicing: Bandwidth-limited (30 fs at 785 nm), positively, and negatively dispersed Temporal Airy Pulses (TAP). The material of choice was 170 μm thick soda-lime glass, inscribed at 1 kHz repetition rate in tight (50× objective) and loose (20× objective) focusing conditions for different laser energies and scanning speeds. After laser processing, the glass was diced by mechanical stress, with a home built four-point bending stage. We analyzed the quality of the scribed lines at the surface and in cross-section after breaking, as well as the necessary breaking force for all three types of laser pulses. We report that positive TAP produced a neat, flat-cut edge on the glass samples compared with the other implemented pulses.
Acknowledgments
The authors wish to express their gratitude to Hendrike Braun-Knie and Arne Senftleben for the valuable discussions. The results were possible with the support of the Erasmus+ programme of the European Union and the partnership in POCU/993/6/13/153178, “Performanță în cercetare” - “Research performance” co-financed by the European Social Fund within the Sectorial Operational Program HumanCapital 2014-2020.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. M.S.R., C.S., and E.R.C. performed the measurements, analyzed data, and composed the manuscript. All authors participated in analytical discussions, and read and approved the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Englert, L.; Rethfeld, B.; Haag, L.; Wollenhaupt, M.; Sarpe-Tudoran, C.; Baumert, T. Control of Ionization Processes in High Band Gap Materials via Tailored Femtosecond Pulses. Opt. Express 2007, 15 (26), 17855–17862. https://doi.org/10.1364/oe.15.017855.Suche in Google Scholar PubMed
2. Yadav, A.; Kbashi, H.; Kolpakov, S.; Gordon, N.; Zhou, K.; Rafailov, E. U. Stealth Dicing of Sapphire Wafers with Near Infra-red Femtosecond Pulses. Appl. Phys. A 2017, 123, 369. https://doi.org/10.1007/s00339-017-0927-0.Suche in Google Scholar
3. Ogundairo, T. O.; Adegoke, D. D.; Akinwumi, I. I.; Olofinnade, O. M. Sustainable Use of Recycled Waste Glass as an Alternative Material for Building Construction – A Review. IOP Conf. Mater. Sci. Eng. 2019, 640, 012073. https://doi.org/10.1088/1757-899X/640/1/012073.Suche in Google Scholar
4. Karazi, S. M.; Ahad, I. U.; Benyounis, K. Y. Laser Micromachining for Transparent Materials. In Reference Module In Materials Science and Materials Engineering; Elsevier: Amsterdam, 2017.10.1016/B978-0-12-803581-8.04149-7Suche in Google Scholar
5. Nur-Luiza, R.; Che-Amat, R.; Ibrahim, M. N.; Shamshinar, S.; Syakirahafiza, M.; Mustaqqim, A. R. Utilization of Recycled Glass Waste as Partial Replacement of Fine Aggregate in Concrete Production. Mater. Sci. Forum 2014, 803, 16–20. https://doi.org/10.4028/www.scientific.net/MSF.803.16.Suche in Google Scholar
6. Lei, W.; Kumar, A.; Yalamanchili, R. Die Singulation Technologies for Advanced Packaging: A Critical Review. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 2012, 30 (4), 040801. https://doi.org/10.1116/1.3700230.Suche in Google Scholar
7. Raj, M. M.; Cheong, K. Y.; Zainuriah, H. Ultrathin Wafer Pre-assembly and Assembly Process Technologies: A Review. Crit. Rev. Solid State Mater. Sci. 2015, 40, 1–40. https://doi.org/10.1080/10408436.2014.992585.Suche in Google Scholar
8. Choi, J.; Kim, R.; Song, D.; Cho, D. W.; Suh, J.; Kim, S.; Ahn, S. H. Analysis of Laser Cutting Process for Different Diagonal Material Shapes. Processes 2022, 10 (12), 2743. https://doi.org/10.3390/pr10122743.Suche in Google Scholar
9. Lum, K. C. P.; Ng, S. L.; Black, I. CO2 Laser Cutting of MDF: 1. Determination of Process Parameter Settings. Opt Laser. Technol. 1999, 32, 67–76. https://doi.org/10.1016/S0030-3992(00)00020-7.Suche in Google Scholar
10. Lian, M.; Seo, Y.; Lee, D. An Experimental Investigation on the Cutting Quality of Three Different Rock Specimens Using High Power Multimode Fiber Laser. Materials 2021, 14 (11), 2972. https://doi.org/10.3390/ma14112972.Suche in Google Scholar PubMed PubMed Central
11. Arshed, F.; Ahmad, A.; Xirouchakis, P.; Metsios, I. Laser Cutting of Carbon Fiber Reinforced Plastic Components for Remanufacturing. J. Remanufacturing 2022, 12, 411–433. https://doi.org/10.1007/s13243-022-00117-6.Suche in Google Scholar
12. Du, X.; Camilo, F.; Craig, B. A. Multi-focal Laser Processing in Transparent Materials Using an Ultrafast Tunable Acoustic Lens. Opt. Lett. 2022, 47, 1634–1637. https://doi.org/10.1364/OL.447854.Suche in Google Scholar PubMed
13. Dudutis, J.; Stonys, R.; Račiukaitis, G.; Gečys, P.; Hellmann, R.; Račiukaitis, G.; Gečys, P. Glass Dicing with Elliptical Bessel Beam. Procedia CIRP 2019, 94, 957–961. https://doi.org/10.1016/j.procir.2020.09.085.Suche in Google Scholar
14. Englert, L.; Wollenhaupt, M.; Sarpe, C.; Otto, D.; Baumert, T. Morphology of Nanoscale Structures on Fused Silica Surfaces from Interaction with Temporally Tailored Femtosecond Pulses. J. Laser Appl. 2012, 24, 5, 042002; https://doi.org/10.2351/1.3697950.Suche in Google Scholar
15. Götte, N.; Winkler, T.; Meinl, T.; Kusserow, T.; Zielinski, B.; Sarpe, C.; Senftleben, A.; Hillmer, H.; Baumert, T. Temporal Airy Pulses for Controlled High Aspect Ratio Nanomachining of Dielectrics. Optica 2016, 3, 389–395. https://doi.org/10.1016/j.optlastec.2017.11.003.Suche in Google Scholar
16. Sarpe, C.; Köhler, J.; Winkler, T.; Wollenhaupt, M.; Baumert, T. Real Time Observation of Transient Electron Density in Water Irradiated with Tailored Femtosecond Laser Pulses. New J. Phys. 2012, 14, 16, 075021. https://doi.org/10.1088/1367-2630/14/7/075021.Suche in Google Scholar
17. Winkler, T.; Sarpe, C.; Jelzow, N.; Lillevang, L. H.; Götte, N.; Zielinski, B.; Balling, P.; Senftleben, A.; Baumert, T. Probing Spatial Properties of Electronic Excitation in Water after Interaction with Temporally Shaped Femtosecond Laser Pulses: Experiments and Simulations. Appl. Surf. Sci. 2016, 374, 235–242. https://doi.org/10.1016/j.apsusc.2015.11.182.Suche in Google Scholar
18. Salman, N.; Lin, L.; Sheikh, M. A. Laser Glass Cutting Techniques - A Review. JLA Celebrates 60th Anniv. Laser 2013, 25 (4), 11. https://doi.org/10.2351/1.4807895.Suche in Google Scholar
19. Shuting, L.; Xin, Z.; Xiaoming, Y. H.; Anming, V.; Sinisa, J.; Martin, J.; Hang-Eun, Y.; Yung, C. S.; Shin, Y. C. Ultrafast Laser Applications in Manufacturing Processes: A State of the Art Review. J. Manuf. Sci. Eng. 2020, 142, 1–43. https://doi.org/10.1115/MSEC2019-2968.Suche in Google Scholar
20. Neugebauer, J Determination of Bending Tensile Strength of Thin Glass. Gent. Challenging Glass 2016, 5. https://doi.org/10.7480/cgc.5.2267.Suche in Google Scholar
21. Präkelt, A.; Wollenhaupt, M.; Assion, A.; Horn, C.; Sarpe-Tudoran, C.; Winter, M.; Baumert, T. Compact, Robust and Flexible Setup for Femtosecond Pulse Shaping. Rev. Sci. Instrum. 2003, 73, 4950–4953. https://doi.org/10.1063/1.1611998.Suche in Google Scholar
22. Xu, Z.; Yao, L.; Haibo; Qiang, W.; Xitan, X.; Lu, C.; Zhixuan, Li; Rui, W.; Jin, G.; Jingjun, X.; Köhler, J.; Wollenhaupt, M.; Bayer, T.; Sarpe, C.; Baumert, T. Zeptosecond Precision Pulse Shaping. Opt. Express 2011, 19, 11638–11653. https://doi.org/10.1364/OE.19.011638.Suche in Google Scholar PubMed
23. Wu, Q.; Zhou, X.; Lu, Y.; Liu, H.; Xu, X.; Chen, L.; Li, Z.; Wang, R.; Guo, J; Xu, J One-step Crack-free Fabrication of Chip-Scale Lithium Niobate through Dispersion Engineering of Femtosecond Pulses. Optica Open 2023, 13. https://doi.org/10.1364/opticaopen.22068122.v1.Suche in Google Scholar
24. Englert, L.; Wollenhaupt, M.; Haag, L.; Sarpe-Tudoran, C.; Rethfeld, B.; Baumert, T. Material Processing of Dielectrics with Temporally Asymmetric Shaped Femtosecond Laser Pulses on the Nanometer Scale. Appl. Phys. A 2008, 92, 749–753; https://doi.org/10.1007/s00339-008-4584-1.Suche in Google Scholar
25. Down-drawn Sheet Dimensions the Following Specifications Are Relevant for D 263® T Eco, D 263® LA Eco, and AS 87 Eco. [Online] Schott. https://www.schott.com/en-ae/products/sheets-p1000333/technical-details?tab=edd72300813544dc901a84bc390fb7c9 (Accessed 2024-05-20).Suche in Google Scholar
26. Domke, M.; Egle, B.; Stroj, S.; Bodea, M.; Schwarz, E.; Fasching, G. Ultrafast-laser Dicing of Thin Silicon Wafers: Strategies to Improve Front- and Backside Breaking Strength. Appl. Phys. A 2017, 123, 746. https://doi.org/10.1007/s00339-017-1374-7.Suche in Google Scholar
27. Gräf, S.; Kunz, C.; Müller, F. A. Formation and Properties of Laser-Induced Periodic Surface Structures on Different Glasses. Materials 2017, 10, 933. https://doi.org/10.3390/ma10080933.Suche in Google Scholar PubMed PubMed Central
28. Shehataa, A.; Ali, M.; Schuchb, R.; Mohameda, T. Experimental Investigations of Nonlinear Optical Properties of Soda-Lime Glasses and Theoretical Study of Self-Compression of Fs Laser Pulses. Opt. Laser Technol. 2019, 116, 276–283; https://doi.org/10.1016/j.optlastec.2019.03.041.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Preface
- Contribution to “From Nanostructure to Function”
- Temporal airy pulses efficiency in thin glass dicing
- Surface investigations of bronze and brass statuary monuments in open-air exposure
- Dual dynamic voltammetric study of the formation of ferrate ions during the electrochemical dissolution of white cast iron in the transpassive region
- Cetuximab-induced changes to tumor oral mucosa models probed by stimulated Raman spectromicroscopy
- From nanostructure to function: hierarchical functional structures in chitin and keratin
- The influence of glycine on β-lactoglobulin amyloid fibril formation – computer simulation study
Artikel in diesem Heft
- Frontmatter
- Preface
- Preface
- Contribution to “From Nanostructure to Function”
- Temporal airy pulses efficiency in thin glass dicing
- Surface investigations of bronze and brass statuary monuments in open-air exposure
- Dual dynamic voltammetric study of the formation of ferrate ions during the electrochemical dissolution of white cast iron in the transpassive region
- Cetuximab-induced changes to tumor oral mucosa models probed by stimulated Raman spectromicroscopy
- From nanostructure to function: hierarchical functional structures in chitin and keratin
- The influence of glycine on β-lactoglobulin amyloid fibril formation – computer simulation study