Home Temporal airy pulses efficiency in thin glass dicing
Article
Licensed
Unlicensed Requires Authentication

Temporal airy pulses efficiency in thin glass dicing

  • Madalin-Stefan Radu ORCID logo , Cristian Sarpe ORCID logo , Elena Ramela Ciobotea ORCID logo , Bastian Zielinski ORCID logo , Radu Constantinescu , Thomas Baumert ORCID logo and Camilo Florian ORCID logo EMAIL logo
Published/Copyright: November 14, 2024

Abstract

Ultrashort pulse laser sources are useful tools for micro- and nano-processing large band gap dielectric materials. One of the biggest advantages of these pulses is the possibility to reach high intensity peaks that promote absorption even in materials transparent to the laser wavelength. In addition, if the pulse temporal distribution is modified, energy absorption enables the ablation of small diameter holes with large depths. In this work, we present preliminary results that implement three types of pulses as precursors for glass dicing: Bandwidth-limited (30 fs at 785 nm), positively, and negatively dispersed Temporal Airy Pulses (TAP). The material of choice was 170 μm thick soda-lime glass, inscribed at 1 kHz repetition rate in tight (50× objective) and loose (20× objective) focusing conditions for different laser energies and scanning speeds. After laser processing, the glass was diced by mechanical stress, with a home built four-point bending stage. We analyzed the quality of the scribed lines at the surface and in cross-section after breaking, as well as the necessary breaking force for all three types of laser pulses. We report that positive TAP produced a neat, flat-cut edge on the glass samples compared with the other implemented pulses.


Corresponding author: Camilo Florian, Institute of Materials Engineering, University of Kassel, Moenchebergstr. 7, 34125 Kassel, Germany; and Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany, E-mail:

Acknowledgments

The authors wish to express their gratitude to Hendrike Braun-Knie and Arne Senftleben for the valuable discussions. The results were possible with the support of the Erasmus+ programme of the European Union and the partnership in POCU/993/6/13/153178, “Performanță în cercetare” - “Research performance” co-financed by the European Social Fund within the Sectorial Operational Program HumanCapital 2014-2020.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. M.S.R., C.S., and E.R.C. performed the measurements, analyzed data, and composed the manuscript. All authors participated in analytical discussions, and read and approved the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Englert, L.; Rethfeld, B.; Haag, L.; Wollenhaupt, M.; Sarpe-Tudoran, C.; Baumert, T. Control of Ionization Processes in High Band Gap Materials via Tailored Femtosecond Pulses. Opt. Express 2007, 15 (26), 17855–17862. https://doi.org/10.1364/oe.15.017855.Search in Google Scholar PubMed

2. Yadav, A.; Kbashi, H.; Kolpakov, S.; Gordon, N.; Zhou, K.; Rafailov, E. U. Stealth Dicing of Sapphire Wafers with Near Infra-red Femtosecond Pulses. Appl. Phys. A 2017, 123, 369. https://doi.org/10.1007/s00339-017-0927-0.Search in Google Scholar

3. Ogundairo, T. O.; Adegoke, D. D.; Akinwumi, I. I.; Olofinnade, O. M. Sustainable Use of Recycled Waste Glass as an Alternative Material for Building Construction – A Review. IOP Conf. Mater. Sci. Eng. 2019, 640, 012073. https://doi.org/10.1088/1757-899X/640/1/012073.Search in Google Scholar

4. Karazi, S. M.; Ahad, I. U.; Benyounis, K. Y. Laser Micromachining for Transparent Materials. In Reference Module In Materials Science and Materials Engineering; Elsevier: Amsterdam, 2017.10.1016/B978-0-12-803581-8.04149-7Search in Google Scholar

5. Nur-Luiza, R.; Che-Amat, R.; Ibrahim, M. N.; Shamshinar, S.; Syakirahafiza, M.; Mustaqqim, A. R. Utilization of Recycled Glass Waste as Partial Replacement of Fine Aggregate in Concrete Production. Mater. Sci. Forum 2014, 803, 16–20. https://doi.org/10.4028/www.scientific.net/MSF.803.16.Search in Google Scholar

6. Lei, W.; Kumar, A.; Yalamanchili, R. Die Singulation Technologies for Advanced Packaging: A Critical Review. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 2012, 30 (4), 040801. https://doi.org/10.1116/1.3700230.Search in Google Scholar

7. Raj, M. M.; Cheong, K. Y.; Zainuriah, H. Ultrathin Wafer Pre-assembly and Assembly Process Technologies: A Review. Crit. Rev. Solid State Mater. Sci. 2015, 40, 1–40. https://doi.org/10.1080/10408436.2014.992585.Search in Google Scholar

8. Choi, J.; Kim, R.; Song, D.; Cho, D. W.; Suh, J.; Kim, S.; Ahn, S. H. Analysis of Laser Cutting Process for Different Diagonal Material Shapes. Processes 2022, 10 (12), 2743. https://doi.org/10.3390/pr10122743.Search in Google Scholar

9. Lum, K. C. P.; Ng, S. L.; Black, I. CO2 Laser Cutting of MDF: 1. Determination of Process Parameter Settings. Opt Laser. Technol. 1999, 32, 67–76. https://doi.org/10.1016/S0030-3992(00)00020-7.Search in Google Scholar

10. Lian, M.; Seo, Y.; Lee, D. An Experimental Investigation on the Cutting Quality of Three Different Rock Specimens Using High Power Multimode Fiber Laser. Materials 2021, 14 (11), 2972. https://doi.org/10.3390/ma14112972.Search in Google Scholar PubMed PubMed Central

11. Arshed, F.; Ahmad, A.; Xirouchakis, P.; Metsios, I. Laser Cutting of Carbon Fiber Reinforced Plastic Components for Remanufacturing. J. Remanufacturing 2022, 12, 411–433. https://doi.org/10.1007/s13243-022-00117-6.Search in Google Scholar

12. Du, X.; Camilo, F.; Craig, B. A. Multi-focal Laser Processing in Transparent Materials Using an Ultrafast Tunable Acoustic Lens. Opt. Lett. 2022, 47, 1634–1637. https://doi.org/10.1364/OL.447854.Search in Google Scholar PubMed

13. Dudutis, J.; Stonys, R.; Račiukaitis, G.; Gečys, P.; Hellmann, R.; Račiukaitis, G.; Gečys, P. Glass Dicing with Elliptical Bessel Beam. Procedia CIRP 2019, 94, 957–961. https://doi.org/10.1016/j.procir.2020.09.085.Search in Google Scholar

14. Englert, L.; Wollenhaupt, M.; Sarpe, C.; Otto, D.; Baumert, T. Morphology of Nanoscale Structures on Fused Silica Surfaces from Interaction with Temporally Tailored Femtosecond Pulses. J. Laser Appl. 2012, 24, 5, 042002; https://doi.org/10.2351/1.3697950.Search in Google Scholar

15. Götte, N.; Winkler, T.; Meinl, T.; Kusserow, T.; Zielinski, B.; Sarpe, C.; Senftleben, A.; Hillmer, H.; Baumert, T. Temporal Airy Pulses for Controlled High Aspect Ratio Nanomachining of Dielectrics. Optica 2016, 3, 389–395. https://doi.org/10.1016/j.optlastec.2017.11.003.Search in Google Scholar

16. Sarpe, C.; Köhler, J.; Winkler, T.; Wollenhaupt, M.; Baumert, T. Real Time Observation of Transient Electron Density in Water Irradiated with Tailored Femtosecond Laser Pulses. New J. Phys. 2012, 14, 16, 075021. https://doi.org/10.1088/1367-2630/14/7/075021.Search in Google Scholar

17. Winkler, T.; Sarpe, C.; Jelzow, N.; Lillevang, L. H.; Götte, N.; Zielinski, B.; Balling, P.; Senftleben, A.; Baumert, T. Probing Spatial Properties of Electronic Excitation in Water after Interaction with Temporally Shaped Femtosecond Laser Pulses: Experiments and Simulations. Appl. Surf. Sci. 2016, 374, 235–242. https://doi.org/10.1016/j.apsusc.2015.11.182.Search in Google Scholar

18. Salman, N.; Lin, L.; Sheikh, M. A. Laser Glass Cutting Techniques - A Review. JLA Celebrates 60th Anniv. Laser 2013, 25 (4), 11. https://doi.org/10.2351/1.4807895.Search in Google Scholar

19. Shuting, L.; Xin, Z.; Xiaoming, Y. H.; Anming, V.; Sinisa, J.; Martin, J.; Hang-Eun, Y.; Yung, C. S.; Shin, Y. C. Ultrafast Laser Applications in Manufacturing Processes: A State of the Art Review. J. Manuf. Sci. Eng. 2020, 142, 1–43. https://doi.org/10.1115/MSEC2019-2968.Search in Google Scholar

20. Neugebauer, J Determination of Bending Tensile Strength of Thin Glass. Gent. Challenging Glass 2016, 5. https://doi.org/10.7480/cgc.5.2267.Search in Google Scholar

21. Präkelt, A.; Wollenhaupt, M.; Assion, A.; Horn, C.; Sarpe-Tudoran, C.; Winter, M.; Baumert, T. Compact, Robust and Flexible Setup for Femtosecond Pulse Shaping. Rev. Sci. Instrum. 2003, 73, 4950–4953. https://doi.org/10.1063/1.1611998.Search in Google Scholar

22. Xu, Z.; Yao, L.; Haibo; Qiang, W.; Xitan, X.; Lu, C.; Zhixuan, Li; Rui, W.; Jin, G.; Jingjun, X.; Köhler, J.; Wollenhaupt, M.; Bayer, T.; Sarpe, C.; Baumert, T. Zeptosecond Precision Pulse Shaping. Opt. Express 2011, 19, 11638–11653. https://doi.org/10.1364/OE.19.011638.Search in Google Scholar PubMed

23. Wu, Q.; Zhou, X.; Lu, Y.; Liu, H.; Xu, X.; Chen, L.; Li, Z.; Wang, R.; Guo, J; Xu, J One-step Crack-free Fabrication of Chip-Scale Lithium Niobate through Dispersion Engineering of Femtosecond Pulses. Optica Open 2023, 13. https://doi.org/10.1364/opticaopen.22068122.v1.Search in Google Scholar

24. Englert, L.; Wollenhaupt, M.; Haag, L.; Sarpe-Tudoran, C.; Rethfeld, B.; Baumert, T. Material Processing of Dielectrics with Temporally Asymmetric Shaped Femtosecond Laser Pulses on the Nanometer Scale. Appl. Phys. A 2008, 92, 749–753; https://doi.org/10.1007/s00339-008-4584-1.Search in Google Scholar

25. Down-drawn Sheet Dimensions the Following Specifications Are Relevant for D 263® T Eco, D 263® LA Eco, and AS 87 Eco. [Online] Schott. https://www.schott.com/en-ae/products/sheets-p1000333/technical-details?tab=edd72300813544dc901a84bc390fb7c9 (Accessed 2024-05-20).Search in Google Scholar

26. Domke, M.; Egle, B.; Stroj, S.; Bodea, M.; Schwarz, E.; Fasching, G. Ultrafast-laser Dicing of Thin Silicon Wafers: Strategies to Improve Front- and Backside Breaking Strength. Appl. Phys. A 2017, 123, 746. https://doi.org/10.1007/s00339-017-1374-7.Search in Google Scholar

27. Gräf, S.; Kunz, C.; Müller, F. A. Formation and Properties of Laser-Induced Periodic Surface Structures on Different Glasses. Materials 2017, 10, 933. https://doi.org/10.3390/ma10080933.Search in Google Scholar PubMed PubMed Central

28. Shehataa, A.; Ali, M.; Schuchb, R.; Mohameda, T. Experimental Investigations of Nonlinear Optical Properties of Soda-Lime Glasses and Theoretical Study of Self-Compression of Fs Laser Pulses. Opt. Laser Technol. 2019, 116, 276–283; https://doi.org/10.1016/j.optlastec.2019.03.041.Search in Google Scholar

Received: 2024-05-31
Accepted: 2024-10-15
Published Online: 2024-11-14
Published in Print: 2025-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0911/html
Scroll to top button