Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies
-
Obinna C. Godfrey
, Godwin Edo
, Magnus C. Nwoko , Alpha O. Gulack , Gideon A. Okon und Moses M. Edim
Abstract
Owing to the growing prevalence of uropathogenic Escherichia coli (UPEC) strains that are more recently resistant to last-line antibiotic treatments, such as carbapenems and colistin drugs, urinary tract infections (UTIs) are a prime example of the antibiotic resistance crisis and emphasize the need for new approaches to treat and prevent bacterial infections. The antibacterial effect of 4-((5-bromo-2-hydroxybenzlidene) amino)-1,5-dimethyl1-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (BDP), a Schiff base derivative, was tested against UPEC, a bacterium responsible for urinary tract infections. This Schiff base compound was optimized in five phases at the ωB97XD/6–311++G(2d,2p) level of theory; therefore, density functional theory studies, spectroscopic analysis, molecular docking analysis, and pharmacokinetic prediction were employed. The stability of the BDP compound was predicted via geometric structural studies, natural bond orbital (NBO) theory, quantum chemical descriptors, and spectral studies such as FT-IR and UV‒vis studies. The ab initio calculation of NBO revealed greater stability of the compound despite the solvation effects of DMSO, methanol, ethanol, and water. This claim was supported by frontier molecular orbital prediction, where the energy gaps were 6.60 eV, 7.45 eV, 7.45 eV, 7.43 eV, and 7.44 eV for the BDP compound present in the gas phase, water, DMSO, ethanol and methanol, respectively. The molecular docking results revealed the antibacterial efficacy of BDP. 5C5Z + BDP and 5VQ5+BDP interactions produced −4.5 and −5.4 kcal/mol binding affinities respectively. BDP displayed stronger interaction with 5VQ5 than with 5C5Z and had better docking activities than FOS. Overall, result has shown that BDP is a potential therapeutic candidate for the treatment of UPEC caused UTIs and has the potential to mitigate the challenges associated with urinary tract infections, hence, should be considered a promising candidate for UTI treatment.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Obinna C. Godfrey: project conceptualization, design and methodology. Godwin Edo, Alpha O. Gulack: analysis, writing, and editing and visualization. Gideon A. Okon: writing, analysis, reviewing, editing and manuscript first draft. Moses M. Edim, Magnus C. Nwoko: resources and supervision.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: All authors declare zero financial or interpersonal conflicts of interest that could have influenced the research or the results reported in this research paper.
-
Research funding: This research was not funded by any Government or Non-governmental agency.
-
Data availability: Not applicable.
References
1. Breshears, M. A.; Confer, A. W. The Urinary System. Pathol. Basis Vet. Med. Dis. 2017, 617; https://doi.org/10.1016/b978-0-323-35775-3.00011-4.Suche in Google Scholar
2. Bazira, P. J. Anatomy of the Lower Urinary Tract. Sur. (Oxford) 2022, 40 (8), 489–500; https://doi.org/10.1016/j.mpsur.2022.05.007.Suche in Google Scholar
3. Foxman, B. Urinary Tract Infection Syndromes: Occurrence, Recurrence, Bacteriology, Risk Factors, and Disease Burden. Infect. Dise. Clin. 2014, 28 (1), 1–13; https://doi.org/10.1016/j.idc.2013.09.003.Suche in Google Scholar PubMed
4. Barnett, B. J.; Stephens, D. S. Urinary Tract Infection: an Overview. Am. J. Med.l Sci. 1997, 314 (4), 245–249; https://doi.org/10.1097/00000441-199710000-00007.Suche in Google Scholar PubMed
5. Madhu, C.; Drake, M. Applied Anatomy and Physiology. In Abrams’ Urodynamics; John Wiley & Sons Ltd.: Hoboken, New Jersey, 2021; pp 24–44.10.1002/9781119245957.ch2Suche in Google Scholar
6. Fang, E. F.; Xie, C.; Schenkel, J. A.; Wu, C.; Long, Q.; Cui, H.; Woo, J.; Frank, J.; Liao, J.; Zou, H.; Wang, N. Y.; Liu, X.; Li, T.; Fang, Y.; Niu, Z.; Yang, G.; Hong, J.; Wang, Q.; Chen, G.; Li, J.; Chen, H. Z.; Kang, L.; Su, H.; Gilmour, B. C.; Zhu, X.; Jiang, H.; Tao, J.; Leng, S. X.; Tong, T. A Research Agenda for Ageing in China in the 21st Century: Focusing on Basic and Translational Research, Long-Term Care, Policy and Social Networks. Ageing Res. Rev. 2020, 64; https://doi.org/10.1016/j.arr.2020.101174.Suche in Google Scholar PubMed PubMed Central
7. Dielubanza, E. J.; Schaeffer, A. J. Urinary Tract Infections in Women. Med. clin. 2011, 95 (1), 27–41; https://doi.org/10.1016/j.mcna.2010.08.023.Suche in Google Scholar PubMed
8. Mancuso, G.; Midiri, A.; Gerace, E.; Marra, M.; Zummo, S.; Biondo, C. Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens 2023, 12 (4), 623; https://doi.org/10.3390/pathogens12040623.Suche in Google Scholar PubMed PubMed Central
9. O’brien, V. P.; Hannan, T. J.; Nielsen, H. V.; Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. Urinary Tract Infect.: Mol. Pathogen. Clin. Manag. 2017, 589–646; https://doi.org/10.1128/9781555817404.ch24.Suche in Google Scholar
10. Foxman, B. The Epidemiology of Urinary Tract Infection. Nature Rev. Urol. 2010, 7 (12), 653–660; https://doi.org/10.1038/nrurol.2010.190.Suche in Google Scholar PubMed
11. Schmiemann, G.; Kniehl, E.; Gebhardt, K.; Matejczyk, M. M.; Hummers-Pradier, E. The Diagnosis of Urinary Tract Infection: a Systematic Review. Deutsch. Ärzteblatt Inter. 2010, 107 (21), 361; https://doi.org/10.3238/arztebl.2010.0361.Suche in Google Scholar PubMed PubMed Central
12. Flores-Mireles, A. L.; Walker, J. N.; Caparon, M.; Hultgren, S. J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Microbiol. 2015, 13 (5), 269–284; https://doi.org/10.1038/nrmicro3432.Suche in Google Scholar PubMed PubMed Central
13. Shaaban, M. A.; Rahman, K. M. Antibiotic Resistance Breakers: Current Approaches and Future Directions. FEMS Microbiol. Rev. 2019, 43 (5), 490–516; https://doi.org/10.1093/femsre/fuz014.Suche in Google Scholar PubMed PubMed Central
14. McLellan, L. K.; Hunstad, D. A. Urinary Tract Infection: Pathogenesis and Outlook. Trends in Mol. Med. 2016, 22 (11), 946–957; https://doi.org/10.1016/j.molmed.2016.09.003.Suche in Google Scholar PubMed PubMed Central
15. Najar, M. S.; Saldanha, C. L.; Banday, K. A. Approach to Urinary Tract Infections. Indian J. Nephrol. 2009, 19 (4), 129–139; https://doi.org/10.4103/0971-4065.59333.Suche in Google Scholar PubMed PubMed Central
16. Hung, C. S.; Dodson, K. W.; Hultgren, S. J. A Murine Model of Urinary Tract Infection. Nat. Prc. 2009, 4 (8), 1230–1243; https://doi.org/10.1038/nprot.2009.116.Suche in Google Scholar PubMed PubMed Central
17. Shaikh, N.; Morone, N. E.; Bost, J. E.; Farrell, M. H. Prevalence of Urinary Tract Infection in Childhood: a Meta-Analysis. The Pediat. Infect. Dis. J. 2008, 27 (4), 302–308; https://doi.org/10.1097/inf.0b013e31815e4122.Suche in Google Scholar PubMed
18. Kunin, C. M. Urinary Tract Infections. Detection, Prevention, and Manag. 1997 (No. Ed. 5), ix+–419.Suche in Google Scholar
19. Foxman, B. Recurring Urinary Tract Infection: Incidence and Risk Factors. Am J. Publ. Health 1990, 80 (3), 331–333; https://doi.org/10.2105/ajph.80.3.331.Suche in Google Scholar PubMed PubMed Central
20. Tan, C. W.; Chlebicki, M. P. Urinary Tract Infections in Adults. Singapore Med. J. 2016, 57 (9), 485; https://doi.org/10.11622/smedj.2016153.Suche in Google Scholar PubMed PubMed Central
21. Pisacane, A.; Graziano, L.; Mazzarella, G.; Scarpellino, B.; Zona, G. Breast-feeding and Urinary Tract Infection. The J. Pediatr. 1992, 120 (1), 87–89; https://doi.org/10.1016/s0022-3476(05)80607-9.Suche in Google Scholar PubMed
22. Platt, R.; Polk, B. F.; Murdock, B.; Rosner, B. Risk Factors for Nosocomial Urinary Tract Infection. Am. J. Epidemiol. 1986, 124 (6), 977–985; https://doi.org/10.1093/oxfordjournals.aje.a114487.Suche in Google Scholar PubMed
23. Ronald, A. The Etiology of Urinary Tract Infection: Traditional and Emerging Pathogens. The Am. J. Med. 2002, 113 (1), 14–19; https://doi.org/10.1016/s0002-9343(02)01055-0.Suche in Google Scholar PubMed
24. Foxman, B.; Barlow, R.; D’Arcy, H.; Gillespie, B.; Sobel, J. D. Urinary Tract Infection: Self-Reported Incidence and Associated Costs. Annals of Epidemiol. 2000, 10 (8), 509–515; https://doi.org/10.1016/s1047-2797(00)00072-7.Suche in Google Scholar PubMed
25. Johnson, J. R., Stamm, W. E. (1989). Urinary Tract Infections in Women: Diagnosis and Treatment. Ann. Internal Med., 1989, 111(11), 906-917, https://doi.org/10.7326/0003-4819-111-11-906.Suche in Google Scholar PubMed
26. Soto, S. M. Importance of Biofilms in Urinary Tract Infections: New Therapeutic Approaches. Adv. Biol. 2014; https://doi.org/10.1155/2014/543974.Suche in Google Scholar
27. Nicolle, L. E. A Practical Guide to Antimicrobial Management of Complicated Urinary Tract Infection. Drugs & Aging 2001, 18, 243–254; https://doi.org/10.2165/00002512-200118040-00002.Suche in Google Scholar PubMed
28. Shirley, M. Ceftazidime-avibactam: a Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018, 78, 675–692; https://doi.org/10.1007/s40265-018-0902-x.Suche in Google Scholar PubMed
29. Bader, M. S.; Loeb, M.; Leto, D.; Brooks, A. A. Treatment of Urinary Tract Infections in the Era of Antimicrobial Resistance and New Antimicrobial Agents. Postgrad. Med. 2020, 132 (3), 234–250; https://doi.org/10.1080/00325481.2019.1680052.Suche in Google Scholar PubMed
30. Beetz, R.; Westenfelder, M. Antimicrobial Therapy of Urinary Tract Infections in Children. Inter. J. Antimicrob. Agents 2011, 38, 42–50; https://doi.org/10.1016/j.ijantimicag.2011.09.006.Suche in Google Scholar PubMed
31. Issakhanian, L.; Behzadi, P. Antimicrobial Agents and Urinary Tract Infections. Curr. Pharmaceutical Des. 2019, 25 (12), 1409–1423; https://doi.org/10.2174/1381612825999190619130216.Suche in Google Scholar PubMed
32. Rowe, T. A.; Juthani-Mehta, M. Urinary Tract Infection in Older Adults. Aging Health 2013, 9 (5), 519–528; https://doi.org/10.2217/ahe.13.38.Suche in Google Scholar PubMed PubMed Central
33. Salihović, M.; Pazalja, M.; Halilović, Š.; Veljović, E.; Mahmutović-Dizdarević, I.; Roca, S.; Trifunović, S.; Trifunović, S. Synthesis, Characterization, Antimicrobial Activity and DFT Study of Some Novel Schiff Bases. J. Mol. Struct. 2021, 1241; https://doi.org/10.1016/j.molstruc.2021.130670.Suche in Google Scholar
34. Basha, M. T.; Alghanmi, R. M.; Shehata, M. R.; Abdel-Rahman, L. H. Synthesis, Structural Characterization, DFT Calculations, Biological Investigation, Molecular Docking and DNA Binding of Co (II), Ni (II) and Cu (II) Nanosized Schiff Base Complexes Bearing Pyrimidine Moiety. J. Mol. Struct. 2019, 1183, 298–312; https://doi.org/10.1016/j.molstruc.2019.02.001.Suche in Google Scholar
35. Rajasekaran, A.; Abraham, S.; Mohanasundaram, S.; Gurusamy, P. Synthesis and the Study of Bioefficacy of Schiff Base Ligand Decorated by Pyrazolone Moiety. Orient. J. Chem. 2020, 36 (2), 244; https://doi.org/10.13005/ojc/360205.Suche in Google Scholar
36. Frisch, M. E., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Fox, D. J. Gaussian 16, Revision C. 01., 2016.Suche in Google Scholar
37. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView 6.0. 16. Semichem Inc: Shawnee Mission, KS, USA, 2001. HyperChem, T. HyperChem 8.07, HyperChem Professional Program. Gainesville, Hypercube, 2016.Suche in Google Scholar
38. Chemcraft, V. 1.8; Graphical Software for Visualization of Quantum Chemistry Computations.Suche in Google Scholar
39. Lu, L.; Li, C.; Rice, J. A. A Software-Defined Multifunctional Radar Sensor for Linear and Reciprocal Displacement Measurement. In 2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks; Qualcomm Technologies Inc.: Texas Tech University, USA, 2011; pp 17–20.10.1109/WISNET.2011.5725027Suche in Google Scholar
40. May, R. A.; Stevenson, K. J. Soft. Rev. Origin 2009, 8.Suche in Google Scholar
41. Jakhar, R.; Dangi, M.; Khichi, A.; Chhillar, A. K. Relevance of Molecular Docking Studies in Drug Designing. Curr. Bioinf. 2020, 15 (4), 270–278; https://doi.org/10.2174/1574893615666191219094216.Suche in Google Scholar
42. Kim, H.; Choi, J.; Kim, D.; Kim, K. K. Crystal Structure Analysis of C4763, a Uropathogenic Escherichia Coli-specific Protein. Acta Crystallograph. Sec. F: Struct. Biol. Commun. 2015, 71 (8), 1042–1047; https://doi.org/10.1107/s2053230x15013035.Suche in Google Scholar PubMed PubMed Central
43. Spaulding, C. N.; Klein, R. D.; Ruer, S.; Kau, A. L.; Schreiber, H. L.; Cusumano, Z. T.; Hultgren, S. J.; Pinkner, J. S.; Fremont, D. H.; Janetka, J. W.; Remaut, H.; Gordon, J. I. Selective Depletion of Uropathogenic E. coli from the Gut by a FimH Antagonist. Nature 2017, 546 (7659), 528–532; https://doi.org/10.1038/nature22972.Suche in Google Scholar PubMed PubMed Central
44. Biovia, D. S.; Dsme, R. Discovery Studio Modeling Environment; Dassault Systèmes: San Diego, 2016.Suche in Google Scholar
45. Yuan, S.; Chan, H. S.; Hu, Z. Using PyMOL as a Platform for Computational Drug Design. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 7 (2), e1298; https://doi.org/10.1002/wcms.1298.Suche in Google Scholar
46. Varghese, J. J.; Mushrif, S. H. Origins of Complex Solvent Effects on Chemical Reactivity and Computational Tools to Investigate Them: a Review. React. Chem. Eng. 2019, 4 (2), 165–206; https://doi.org/10.1039/c8re00226f.Suche in Google Scholar
47. Mumit, M. A.; Pal, T. K.; Alam, M. A.; Islam, M. A. A. A. A.; Paul, S.; Sheikh, M. C. DFT Studies on Vibrational and Electronic Spectra, HOMO–LUMO, MEP, HOMA, NBO and Molecular Docking Analysis of Benzyl-3-N-(2, 4,5-trimethoxyphenylmethylene) Hydrazinecarbodithioate. J. Mol. Struct. 2020, 1220; https://doi.org/10.1016/j.molstruc.2020.128715.Suche in Google Scholar PubMed PubMed Central
48. Karrouchi, K.; Brandán, S. A.; Hassan, M.; Bougrin, K.; Radi, S.; Ferbinteanu, M.; Garcia, Y.; Ansar, M. Synthesis, X-Ray, Spectroscopy, Molecular Docking and DFT Calculations of (E)-N’-(2,4-dichlorobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide. J. Mol. Struct. 2021, 1228; https://doi.org/10.1016/j.molstruc.2020.129714.Suche in Google Scholar
49. Janani, S.; Rajagopal, H.; Muthu, S.; Aayisha, S.; Raja, M. Molecular Structure, Spectroscopic (FT-IR, FT-Raman, NMR), HOMO-LUMO, Chemical Reactivity, AIM, ELF, LOL and Molecular Docking Studies on 1-Benzyl-4-(n-Boc-Amino) Piperidine. J. Mol. Struct. 2021, 1230; https://doi.org/10.1016/j.molstruc.2020.129657.Suche in Google Scholar
50. Saito, K.; Xu, T.; Ishikita, H. Correlation between C═ O Stretching Vibrational Frequency and P K a Shift of Carboxylic Acids. J. Phys. Chem. B 2022, 126 (27), 4999–5006, https://doi.org/10.1021/acs.jpcb.2c02193.Suche in Google Scholar PubMed PubMed Central
51. Ali, M.; Mansha, A.; Asim, S.; Zahid, M.; Usman, M.; Ali, N. DFT Study for the Spectroscopic and Structural Analysis of P-Dimethylaminoazobenzene. J. Spectrosc. 2018, 1–15. https://doi.org/10.1155/2018/9365153.Suche in Google Scholar
52. Barbosa, A. S. L.; Guedes, J. D. S.; Da Silva, D. R.; Meneghetti, S. M. P.; Meneghetti, M. R.; Da Silva, A. E.; De Araujo, M. V.; Alexandre-Moreira, M. S.; De Aquino, T. M.; De Siqueira Junior, J. P.; De Araújo, R. S. A.; Da Cruz, R. M. D.; Mendonça-Junior, F. J. B. Synthesis and Evaluation of the Antibiotic and Adjuvant Antibiotic Potential of Organotin(IV) Derivatives. J. Inorg. Biochem. 2018, 180, 80–88. https://doi.org/10.1016/j.jinorgbio.2017.12.004.Suche in Google Scholar PubMed
53. Tamer, Ö; Dege, N.; Demirtaş, G.; Avcı, D.; Atalay, Y.; Macit, M.; Ağar, A. A. An Experimental and Theoretical Study on the Novel (Z)-1-((naphthalen-2-ylamino)methylene)naphthalen-2(1H)-one Crystal. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc, 2014, 117, 13–23. ISSN 1386-1425 https://doi.org/10.1016/j.saa.2013.07.098.Suche in Google Scholar PubMed
54. Perkampus, H. H. UV‒VIS Spectroscopy and its Applications; Springer: Berlin, Heidelberg, Germany, 2013.Suche in Google Scholar
55. Klamt, A. Calculation of UV/Vis Spectra in Solution. The J. Phys. Chem. 1996, 100 (9), 3349–3353; https://doi.org/10.1021/jp950607f.Suche in Google Scholar
56. Adindu, E. A.; Ekpong, B. O.; Runde, M.; Atotse, A. M.; Ojumola, F. O.; Gulack, A. O.; Louis, H.; Iyam, S. O.; Odey, M. O.; Benjamin, I.; Gber, T. E. Investigating the Anti-filarial Efficacy and Molecular Interactions of Thiadiazol Derivative: Insight from Quantum Chemical Calculations, Pharmacokinetics, and Molecular Docking Studies. Chem. Phys. Impac. 2024, 8, 1–33; https://doi.org/10.1016/j.chphi.2024.100459.Suche in Google Scholar
57. Katritzky, A. R.; Kuanar, M.; Slavov, S.; Hall, C. D.; Karelson, M.; Kahn, I.; Dobchev, D. A. Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction. Chem. Rev. 2010, 110 (10), 5714–5789; https://doi.org/10.1021/cr900238d.Suche in Google Scholar PubMed
58. Songül, Ş.; Necmi, D. Synthesis, Characterization, X-Ray, HOMO-LUMO, MEP, FT-IR, NLO, Hirshfeld Surface, ADMET, Boiled-Egg Model Properties and Molecular Docking Studies with Human Cyclophilin D (CypD) of a Schiff Base Compound: (E)-1-(5-nitro-2-(piperidin-1-yl)phenyl)-N-(3-nitrophenyl)methanimine. Polyhedron 2021, 205. https://doi.org/10.1016/j.poly.2021.115320.Suche in Google Scholar
59. Pearson, R. G. Chemical Hardness and Density Functional Theory. J. Chem. Sci. 2005, 117, 369–377; https://doi.org/10.1007/bf02708340.Suche in Google Scholar
60. Zhan, C. G.; Nichols, J. A.; Dixon, D. A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. The J. Phys. Chem. A 2003, 107 (20), 4184–4195; https://doi.org/10.1021/jp0225774.Suche in Google Scholar
61. Vijayaraj, R.; Subramanian, V.; Chattaraj, P. K. Comparison of Global Reactivity Descriptors Calculated Using Various Density Functionals: a QSAR Perspective. J. Chem. Theory and Computat. 2009, 5 (10), 2744–2753; https://doi.org/10.1021/ct900347f.Suche in Google Scholar PubMed
62. Mulliken, R. S. The Interaction of Electron Donors and Acceptors. J. Chim. Phys. 1964, 61, 20–38; https://doi.org/10.1051/jcp/1964610020.Suche in Google Scholar
63. Weinhold, F. Natural Bond Orbital Analysis: A Critical Overview of Relationships to Alternative Bonding Perspectives. J. Computat. Chem. 2012, 33 (30), 2363–2379; https://doi.org/10.1002/jcc.23060.Suche in Google Scholar PubMed
64. Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural Bond Orbital Methods. Wiley Interdiscipl. Rev.: Computat.l Mol. Sci. 2012, 2 (1), 1–42; https://doi.org/10.1002/wcms.51.Suche in Google Scholar
65. Poater, J.; Duran, M.; Sola, M.; Silvi, B. Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chem. Rev. 2005, 105 (10), 3911–3947; https://doi.org/10.1021/cr030085x.Suche in Google Scholar PubMed
66. Iyam, S. O.; Ogbodo, S. E.; Okafor, E. R.; Runde, M.; Gulack, A. O.; Odey, M. O.; Louis, H.; Edet, U.; Benjamin, I. Elucidating the Antibacterial Efficacy of Thiadiazol Derivative against Carbapenem-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa: An In-Silico Perspective. Chem. Phys. Impac. 2024; https://doi.org/10.1016/j.chphi.2024.100466.Suche in Google Scholar
67. Frieden, E. Noncovalent Interactions: Key to Biological Flexibility and Specificity. J. Chem. Edu. 1975, 52 (12), 754; https://doi.org/10.1021/ed052p754.Suche in Google Scholar PubMed
68. Flynn, E. Clin. Pharmacokinet. 2007, 46, 1–2.Suche in Google Scholar
69. Dege, N.; Raza, M. A.; Doğan, O. E.; Ağar, T.; Mumtaz, M. W. Theoretical and Experimental Approaches of New Schiff Bases: Efficient Synthesis, X-Ray Structures, DFT, Molecular Modeling and ADMET Studies. J IRAN CHEM SOC 2021, 18, 2345–2368. https://doi.org/10.1007/s13738-021-02194-z.Suche in Google Scholar
70. Tatlidil, D.; Raza, M. A.; Dege, N.; Agar, A. A.; Farwa, U.; Rehman, S. U. Therapeutical Potential of Imines; Synthesis, Single Crystal Structure, Computational, Molecular Modeling, and ADMET Evaluation. ACS Omega 2022, 7 (12), 10568–10579. https://doi.org/10.1021/acsomega.2c00102, https://pubs.acs.org/doi/full/10.1021/acsomega.2c00102.Suche in Google Scholar PubMed PubMed Central
71. Daina, A.; Michielin, O.; Zoete, V. SwissADME: a Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7 (1); https://doi.org/10.1038/srep42717.Suche in Google Scholar PubMed PubMed Central
72. Banerjee, P.; Eckert, A. O.; Schrey, A. K.; Preissner, R. ProTox-II: a Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46 (1), 257–263; https://doi.org/10.1093/nar/gky318.Suche in Google Scholar PubMed PubMed Central
73. Chang, Y. C.; Chen, C. P.; Chen, C. C. Predicting Skin Permeability of Chemical Substances Using a Quantitative Structure-Activity Relationship. Procedia Eng. 2012, 45, 875–879; https://doi.org/10.1016/j.proeng.2012.08.252.Suche in Google Scholar
74. Hinge, V. K.; Roy, D.; Kovalenko, A. Predicting Skin Permeability Using the 3D-RISM-KH Theory Based Solvation Energy Descriptors for a Diverse Class of Compounds. J. Comput.-Aided Mol. Des. 2019, 33 (6), 605–611; https://doi.org/10.1007/s10822-019-00205-z.Suche in Google Scholar PubMed
75. Jetté, L.; Potier, M.; Béliveau, R. P-Glycoprotein Is a Dimer in the Kidney and Brain Capillary Membranes: Effect of Cyclosporin A and SDZ-PSC 833. Biochemistry 1997, 36 (45), 13929–13937; https://doi.org/10.1021/bi970737+.10.1021/bi970737+Suche in Google Scholar PubMed
76. Talevi, A.; Bellera, C. L. Drug Metabolism. In The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics; Springer International Publishing: Cham, 2022; pp. 362–368.10.1007/978-3-030-84860-6_6Suche in Google Scholar
77. Song, Y.; Li, C.; Liu, G.; Liu, R.; Chen, Y.; Li, W.; Liu, Y.; Zhao, B.; Lu, C. Drug-metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes. Clin. Pharmacokinet. 2021, 60, 585–601; https://doi.org/10.1007/s40262-021-01001-5.Suche in Google Scholar PubMed
78. Lipinski, C. A. Rule of Five in 2015 and beyond: Target and Ligand Structural Limitations, Ligand Chemistry Structure and Drug Discovery Project Decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41; https://doi.org/10.1016/j.addr.2016.04.029.Suche in Google Scholar PubMed
79. Correia, M. A. Drug Biotransformation. Basic & Clinical Pharmacol. 2018, 53.Suche in Google Scholar
80. McGhie, T. K.; Walton, M. C. The Bioavailability and Absorption of Anthocyanins: towards a Better Understanding. Mol. Nutr. Food Res. 2007, 51 (6), 702–713; https://doi.org/10.1002/mnfr.200700092.Suche in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zpch-2024-0910).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Articles
- Surfactants in action: chemistry, behavior, and industrial applications
- Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation
- Nanomaterials at the forefront: classification, fabrication technique, and cross-sector applications
- Original Papers
- Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties
- Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies
- Continuous rapid cooling of polarized electrons initiates Mpemba superfreezing
- Synthesis and characterization of CNTs doped polymeric composites: comparative studies on exploring impact of CNT concentration on morphological, structural, thermokinetic and mechanical attributes
- Frumkin’s adsorption model – a successful approach for understanding surfactant adsorption layers
Artikel in diesem Heft
- Frontmatter
- Review Articles
- Surfactants in action: chemistry, behavior, and industrial applications
- Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation
- Nanomaterials at the forefront: classification, fabrication technique, and cross-sector applications
- Original Papers
- Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties
- Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies
- Continuous rapid cooling of polarized electrons initiates Mpemba superfreezing
- Synthesis and characterization of CNTs doped polymeric composites: comparative studies on exploring impact of CNT concentration on morphological, structural, thermokinetic and mechanical attributes
- Frumkin’s adsorption model – a successful approach for understanding surfactant adsorption layers