Home Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies
Article
Licensed
Unlicensed Requires Authentication

Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies

  • Obinna C. Godfrey ORCID logo EMAIL logo , Godwin Edo , Magnus C. Nwoko , Alpha O. Gulack , Gideon A. Okon and Moses M. Edim
Published/Copyright: November 18, 2024

Abstract

Owing to the growing prevalence of uropathogenic Escherichia coli (UPEC) strains that are more recently resistant to last-line antibiotic treatments, such as carbapenems and colistin drugs, urinary tract infections (UTIs) are a prime example of the antibiotic resistance crisis and emphasize the need for new approaches to treat and prevent bacterial infections. The antibacterial effect of 4-((5-bromo-2-hydroxybenzlidene) amino)-1,5-dimethyl1-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (BDP), a Schiff base derivative, was tested against UPEC, a bacterium responsible for urinary tract infections. This Schiff base compound was optimized in five phases at the ωB97XD/6–311++G(2d,2p) level of theory; therefore, density functional theory studies, spectroscopic analysis, molecular docking analysis, and pharmacokinetic prediction were employed. The stability of the BDP compound was predicted via geometric structural studies, natural bond orbital (NBO) theory, quantum chemical descriptors, and spectral studies such as FT-IR and UV‒vis studies. The ab initio calculation of NBO revealed greater stability of the compound despite the solvation effects of DMSO, methanol, ethanol, and water. This claim was supported by frontier molecular orbital prediction, where the energy gaps were 6.60 eV, 7.45 eV, 7.45 eV, 7.43 eV, and 7.44 eV for the BDP compound present in the gas phase, water, DMSO, ethanol and methanol, respectively. The molecular docking results revealed the antibacterial efficacy of BDP. 5C5Z + BDP and 5VQ5+BDP interactions produced −4.5 and −5.4 kcal/mol binding affinities respectively. BDP displayed stronger interaction with 5VQ5 than with 5C5Z and had better docking activities than FOS. Overall, result has shown that BDP is a potential therapeutic candidate for the treatment of UPEC caused UTIs and has the potential to mitigate the challenges associated with urinary tract infections, hence, should be considered a promising candidate for UTI treatment.


Corresponding author: Obinna C. Godfrey, Department of Biochemistry, University of Calabar, Calabar, Nigeria, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Obinna C. Godfrey: project conceptualization, design and methodology. Godwin Edo, Alpha O. Gulack: analysis, writing, and editing and visualization. Gideon A. Okon: writing, analysis, reviewing, editing and manuscript first draft. Moses M. Edim, Magnus C. Nwoko: resources and supervision.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All authors declare zero financial or interpersonal conflicts of interest that could have influenced the research or the results reported in this research paper.

  6. Research funding: This research was not funded by any Government or Non-governmental agency.

  7. Data availability: Not applicable.

References

1. Breshears, M. A.; Confer, A. W. The Urinary System. Pathol. Basis Vet. Med. Dis. 2017, 617; https://doi.org/10.1016/b978-0-323-35775-3.00011-4.Search in Google Scholar

2. Bazira, P. J. Anatomy of the Lower Urinary Tract. Sur. (Oxford) 2022, 40 (8), 489–500; https://doi.org/10.1016/j.mpsur.2022.05.007.Search in Google Scholar

3. Foxman, B. Urinary Tract Infection Syndromes: Occurrence, Recurrence, Bacteriology, Risk Factors, and Disease Burden. Infect. Dise. Clin. 2014, 28 (1), 1–13; https://doi.org/10.1016/j.idc.2013.09.003.Search in Google Scholar PubMed

4. Barnett, B. J.; Stephens, D. S. Urinary Tract Infection: an Overview. Am. J. Med.l Sci. 1997, 314 (4), 245–249; https://doi.org/10.1097/00000441-199710000-00007.Search in Google Scholar PubMed

5. Madhu, C.; Drake, M. Applied Anatomy and Physiology. In Abrams’ Urodynamics; John Wiley & Sons Ltd.: Hoboken, New Jersey, 2021; pp 24–44.10.1002/9781119245957.ch2Search in Google Scholar

6. Fang, E. F.; Xie, C.; Schenkel, J. A.; Wu, C.; Long, Q.; Cui, H.; Woo, J.; Frank, J.; Liao, J.; Zou, H.; Wang, N. Y.; Liu, X.; Li, T.; Fang, Y.; Niu, Z.; Yang, G.; Hong, J.; Wang, Q.; Chen, G.; Li, J.; Chen, H. Z.; Kang, L.; Su, H.; Gilmour, B. C.; Zhu, X.; Jiang, H.; Tao, J.; Leng, S. X.; Tong, T. A Research Agenda for Ageing in China in the 21st Century: Focusing on Basic and Translational Research, Long-Term Care, Policy and Social Networks. Ageing Res. Rev. 2020, 64; https://doi.org/10.1016/j.arr.2020.101174.Search in Google Scholar PubMed PubMed Central

7. Dielubanza, E. J.; Schaeffer, A. J. Urinary Tract Infections in Women. Med. clin. 2011, 95 (1), 27–41; https://doi.org/10.1016/j.mcna.2010.08.023.Search in Google Scholar PubMed

8. Mancuso, G.; Midiri, A.; Gerace, E.; Marra, M.; Zummo, S.; Biondo, C. Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens 2023, 12 (4), 623; https://doi.org/10.3390/pathogens12040623.Search in Google Scholar PubMed PubMed Central

9. O’brien, V. P.; Hannan, T. J.; Nielsen, H. V.; Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. Urinary Tract Infect.: Mol. Pathogen. Clin. Manag. 2017, 589–646; https://doi.org/10.1128/9781555817404.ch24.Search in Google Scholar

10. Foxman, B. The Epidemiology of Urinary Tract Infection. Nature Rev. Urol. 2010, 7 (12), 653–660; https://doi.org/10.1038/nrurol.2010.190.Search in Google Scholar PubMed

11. Schmiemann, G.; Kniehl, E.; Gebhardt, K.; Matejczyk, M. M.; Hummers-Pradier, E. The Diagnosis of Urinary Tract Infection: a Systematic Review. Deutsch. Ärzteblatt Inter. 2010, 107 (21), 361; https://doi.org/10.3238/arztebl.2010.0361.Search in Google Scholar PubMed PubMed Central

12. Flores-Mireles, A. L.; Walker, J. N.; Caparon, M.; Hultgren, S. J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Microbiol. 2015, 13 (5), 269–284; https://doi.org/10.1038/nrmicro3432.Search in Google Scholar PubMed PubMed Central

13. Shaaban, M. A.; Rahman, K. M. Antibiotic Resistance Breakers: Current Approaches and Future Directions. FEMS Microbiol. Rev. 2019, 43 (5), 490–516; https://doi.org/10.1093/femsre/fuz014.Search in Google Scholar PubMed PubMed Central

14. McLellan, L. K.; Hunstad, D. A. Urinary Tract Infection: Pathogenesis and Outlook. Trends in Mol. Med. 2016, 22 (11), 946–957; https://doi.org/10.1016/j.molmed.2016.09.003.Search in Google Scholar PubMed PubMed Central

15. Najar, M. S.; Saldanha, C. L.; Banday, K. A. Approach to Urinary Tract Infections. Indian J. Nephrol. 2009, 19 (4), 129–139; https://doi.org/10.4103/0971-4065.59333.Search in Google Scholar PubMed PubMed Central

16. Hung, C. S.; Dodson, K. W.; Hultgren, S. J. A Murine Model of Urinary Tract Infection. Nat. Prc. 2009, 4 (8), 1230–1243; https://doi.org/10.1038/nprot.2009.116.Search in Google Scholar PubMed PubMed Central

17. Shaikh, N.; Morone, N. E.; Bost, J. E.; Farrell, M. H. Prevalence of Urinary Tract Infection in Childhood: a Meta-Analysis. The Pediat. Infect. Dis. J. 2008, 27 (4), 302–308; https://doi.org/10.1097/inf.0b013e31815e4122.Search in Google Scholar PubMed

18. Kunin, C. M. Urinary Tract Infections. Detection, Prevention, and Manag. 1997 (No. Ed. 5), ix+–419.Search in Google Scholar

19. Foxman, B. Recurring Urinary Tract Infection: Incidence and Risk Factors. Am J. Publ. Health 1990, 80 (3), 331–333; https://doi.org/10.2105/ajph.80.3.331.Search in Google Scholar PubMed PubMed Central

20. Tan, C. W.; Chlebicki, M. P. Urinary Tract Infections in Adults. Singapore Med. J. 2016, 57 (9), 485; https://doi.org/10.11622/smedj.2016153.Search in Google Scholar PubMed PubMed Central

21. Pisacane, A.; Graziano, L.; Mazzarella, G.; Scarpellino, B.; Zona, G. Breast-feeding and Urinary Tract Infection. The J. Pediatr. 1992, 120 (1), 87–89; https://doi.org/10.1016/s0022-3476(05)80607-9.Search in Google Scholar PubMed

22. Platt, R.; Polk, B. F.; Murdock, B.; Rosner, B. Risk Factors for Nosocomial Urinary Tract Infection. Am. J. Epidemiol. 1986, 124 (6), 977–985; https://doi.org/10.1093/oxfordjournals.aje.a114487.Search in Google Scholar PubMed

23. Ronald, A. The Etiology of Urinary Tract Infection: Traditional and Emerging Pathogens. The Am. J. Med. 2002, 113 (1), 14–19; https://doi.org/10.1016/s0002-9343(02)01055-0.Search in Google Scholar PubMed

24. Foxman, B.; Barlow, R.; D’Arcy, H.; Gillespie, B.; Sobel, J. D. Urinary Tract Infection: Self-Reported Incidence and Associated Costs. Annals of Epidemiol. 2000, 10 (8), 509–515; https://doi.org/10.1016/s1047-2797(00)00072-7.Search in Google Scholar PubMed

25. Johnson, J. R., Stamm, W. E. (1989). Urinary Tract Infections in Women: Diagnosis and Treatment. Ann. Internal Med., 1989, 111(11), 906-917, https://doi.org/10.7326/0003-4819-111-11-906.Search in Google Scholar PubMed

26. Soto, S. M. Importance of Biofilms in Urinary Tract Infections: New Therapeutic Approaches. Adv. Biol. 2014; https://doi.org/10.1155/2014/543974.Search in Google Scholar

27. Nicolle, L. E. A Practical Guide to Antimicrobial Management of Complicated Urinary Tract Infection. Drugs & Aging 2001, 18, 243–254; https://doi.org/10.2165/00002512-200118040-00002.Search in Google Scholar PubMed

28. Shirley, M. Ceftazidime-avibactam: a Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018, 78, 675–692; https://doi.org/10.1007/s40265-018-0902-x.Search in Google Scholar PubMed

29. Bader, M. S.; Loeb, M.; Leto, D.; Brooks, A. A. Treatment of Urinary Tract Infections in the Era of Antimicrobial Resistance and New Antimicrobial Agents. Postgrad. Med. 2020, 132 (3), 234–250; https://doi.org/10.1080/00325481.2019.1680052.Search in Google Scholar PubMed

30. Beetz, R.; Westenfelder, M. Antimicrobial Therapy of Urinary Tract Infections in Children. Inter. J. Antimicrob. Agents 2011, 38, 42–50; https://doi.org/10.1016/j.ijantimicag.2011.09.006.Search in Google Scholar PubMed

31. Issakhanian, L.; Behzadi, P. Antimicrobial Agents and Urinary Tract Infections. Curr. Pharmaceutical Des. 2019, 25 (12), 1409–1423; https://doi.org/10.2174/1381612825999190619130216.Search in Google Scholar PubMed

32. Rowe, T. A.; Juthani-Mehta, M. Urinary Tract Infection in Older Adults. Aging Health 2013, 9 (5), 519–528; https://doi.org/10.2217/ahe.13.38.Search in Google Scholar PubMed PubMed Central

33. Salihović, M.; Pazalja, M.; Halilović, Š.; Veljović, E.; Mahmutović-Dizdarević, I.; Roca, S.; Trifunović, S.; Trifunović, S. Synthesis, Characterization, Antimicrobial Activity and DFT Study of Some Novel Schiff Bases. J. Mol. Struct. 2021, 1241; https://doi.org/10.1016/j.molstruc.2021.130670.Search in Google Scholar

34. Basha, M. T.; Alghanmi, R. M.; Shehata, M. R.; Abdel-Rahman, L. H. Synthesis, Structural Characterization, DFT Calculations, Biological Investigation, Molecular Docking and DNA Binding of Co (II), Ni (II) and Cu (II) Nanosized Schiff Base Complexes Bearing Pyrimidine Moiety. J. Mol. Struct. 2019, 1183, 298–312; https://doi.org/10.1016/j.molstruc.2019.02.001.Search in Google Scholar

35. Rajasekaran, A.; Abraham, S.; Mohanasundaram, S.; Gurusamy, P. Synthesis and the Study of Bioefficacy of Schiff Base Ligand Decorated by Pyrazolone Moiety. Orient. J. Chem. 2020, 36 (2), 244; https://doi.org/10.13005/ojc/360205.Search in Google Scholar

36. Frisch, M. E., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Fox, D. J. Gaussian 16, Revision C. 01., 2016.Search in Google Scholar

37. Dennington, R.; Keith, T. A.; Millam, J. M. GaussView 6.0. 16. Semichem Inc: Shawnee Mission, KS, USA, 2001. HyperChem, T. HyperChem 8.07, HyperChem Professional Program. Gainesville, Hypercube, 2016.Search in Google Scholar

38. Chemcraft, V. 1.8; Graphical Software for Visualization of Quantum Chemistry Computations.Search in Google Scholar

39. Lu, L.; Li, C.; Rice, J. A. A Software-Defined Multifunctional Radar Sensor for Linear and Reciprocal Displacement Measurement. In 2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks; Qualcomm Technologies Inc.: Texas Tech University, USA, 2011; pp 17–20.10.1109/WISNET.2011.5725027Search in Google Scholar

40. May, R. A.; Stevenson, K. J. Soft. Rev. Origin 2009, 8.Search in Google Scholar

41. Jakhar, R.; Dangi, M.; Khichi, A.; Chhillar, A. K. Relevance of Molecular Docking Studies in Drug Designing. Curr. Bioinf. 2020, 15 (4), 270–278; https://doi.org/10.2174/1574893615666191219094216.Search in Google Scholar

42. Kim, H.; Choi, J.; Kim, D.; Kim, K. K. Crystal Structure Analysis of C4763, a Uropathogenic Escherichia Coli-specific Protein. Acta Crystallograph. Sec. F: Struct. Biol. Commun. 2015, 71 (8), 1042–1047; https://doi.org/10.1107/s2053230x15013035.Search in Google Scholar PubMed PubMed Central

43. Spaulding, C. N.; Klein, R. D.; Ruer, S.; Kau, A. L.; Schreiber, H. L.; Cusumano, Z. T.; Hultgren, S. J.; Pinkner, J. S.; Fremont, D. H.; Janetka, J. W.; Remaut, H.; Gordon, J. I. Selective Depletion of Uropathogenic E. coli from the Gut by a FimH Antagonist. Nature 2017, 546 (7659), 528–532; https://doi.org/10.1038/nature22972.Search in Google Scholar PubMed PubMed Central

44. Biovia, D. S.; Dsme, R. Discovery Studio Modeling Environment; Dassault Systèmes: San Diego, 2016.Search in Google Scholar

45. Yuan, S.; Chan, H. S.; Hu, Z. Using PyMOL as a Platform for Computational Drug Design. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 7 (2), e1298; https://doi.org/10.1002/wcms.1298.Search in Google Scholar

46. Varghese, J. J.; Mushrif, S. H. Origins of Complex Solvent Effects on Chemical Reactivity and Computational Tools to Investigate Them: a Review. React. Chem. Eng. 2019, 4 (2), 165–206; https://doi.org/10.1039/c8re00226f.Search in Google Scholar

47. Mumit, M. A.; Pal, T. K.; Alam, M. A.; Islam, M. A. A. A. A.; Paul, S.; Sheikh, M. C. DFT Studies on Vibrational and Electronic Spectra, HOMO–LUMO, MEP, HOMA, NBO and Molecular Docking Analysis of Benzyl-3-N-(2, 4,5-trimethoxyphenylmethylene) Hydrazinecarbodithioate. J. Mol. Struct. 2020, 1220; https://doi.org/10.1016/j.molstruc.2020.128715.Search in Google Scholar PubMed PubMed Central

48. Karrouchi, K.; Brandán, S. A.; Hassan, M.; Bougrin, K.; Radi, S.; Ferbinteanu, M.; Garcia, Y.; Ansar, M. Synthesis, X-Ray, Spectroscopy, Molecular Docking and DFT Calculations of (E)-N’-(2,4-dichlorobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide. J. Mol. Struct. 2021, 1228; https://doi.org/10.1016/j.molstruc.2020.129714.Search in Google Scholar

49. Janani, S.; Rajagopal, H.; Muthu, S.; Aayisha, S.; Raja, M. Molecular Structure, Spectroscopic (FT-IR, FT-Raman, NMR), HOMO-LUMO, Chemical Reactivity, AIM, ELF, LOL and Molecular Docking Studies on 1-Benzyl-4-(n-Boc-Amino) Piperidine. J. Mol. Struct. 2021, 1230; https://doi.org/10.1016/j.molstruc.2020.129657.Search in Google Scholar

50. Saito, K.; Xu, T.; Ishikita, H. Correlation between C═ O Stretching Vibrational Frequency and P K a Shift of Carboxylic Acids. J. Phys. Chem. B 2022, 126 (27), 4999–5006, https://doi.org/10.1021/acs.jpcb.2c02193.Search in Google Scholar PubMed PubMed Central

51. Ali, M.; Mansha, A.; Asim, S.; Zahid, M.; Usman, M.; Ali, N. DFT Study for the Spectroscopic and Structural Analysis of P-Dimethylaminoazobenzene. J. Spectrosc. 2018, 1–15. https://doi.org/10.1155/2018/9365153.Search in Google Scholar

52. Barbosa, A. S. L.; Guedes, J. D. S.; Da Silva, D. R.; Meneghetti, S. M. P.; Meneghetti, M. R.; Da Silva, A. E.; De Araujo, M. V.; Alexandre-Moreira, M. S.; De Aquino, T. M.; De Siqueira Junior, J. P.; De Araújo, R. S. A.; Da Cruz, R. M. D.; Mendonça-Junior, F. J. B. Synthesis and Evaluation of the Antibiotic and Adjuvant Antibiotic Potential of Organotin(IV) Derivatives. J. Inorg. Biochem. 2018, 180, 80–88. https://doi.org/10.1016/j.jinorgbio.2017.12.004.Search in Google Scholar PubMed

53. Tamer, Ö; Dege, N.; Demirtaş, G.; Avcı, D.; Atalay, Y.; Macit, M.; Ağar, A. A. An Experimental and Theoretical Study on the Novel (Z)-1-((naphthalen-2-ylamino)methylene)naphthalen-2(1H)-one Crystal. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc, 2014, 117, 13–23. ISSN 1386-1425 https://doi.org/10.1016/j.saa.2013.07.098.Search in Google Scholar PubMed

54. Perkampus, H. H. UV‒VIS Spectroscopy and its Applications; Springer: Berlin, Heidelberg, Germany, 2013.Search in Google Scholar

55. Klamt, A. Calculation of UV/Vis Spectra in Solution. The J. Phys. Chem. 1996, 100 (9), 3349–3353; https://doi.org/10.1021/jp950607f.Search in Google Scholar

56. Adindu, E. A.; Ekpong, B. O.; Runde, M.; Atotse, A. M.; Ojumola, F. O.; Gulack, A. O.; Louis, H.; Iyam, S. O.; Odey, M. O.; Benjamin, I.; Gber, T. E. Investigating the Anti-filarial Efficacy and Molecular Interactions of Thiadiazol Derivative: Insight from Quantum Chemical Calculations, Pharmacokinetics, and Molecular Docking Studies. Chem. Phys. Impac. 2024, 8, 1–33; https://doi.org/10.1016/j.chphi.2024.100459.Search in Google Scholar

57. Katritzky, A. R.; Kuanar, M.; Slavov, S.; Hall, C. D.; Karelson, M.; Kahn, I.; Dobchev, D. A. Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction. Chem. Rev. 2010, 110 (10), 5714–5789; https://doi.org/10.1021/cr900238d.Search in Google Scholar PubMed

58. Songül, Ş.; Necmi, D. Synthesis, Characterization, X-Ray, HOMO-LUMO, MEP, FT-IR, NLO, Hirshfeld Surface, ADMET, Boiled-Egg Model Properties and Molecular Docking Studies with Human Cyclophilin D (CypD) of a Schiff Base Compound: (E)-1-(5-nitro-2-(piperidin-1-yl)phenyl)-N-(3-nitrophenyl)methanimine. Polyhedron 2021, 205. https://doi.org/10.1016/j.poly.2021.115320.Search in Google Scholar

59. Pearson, R. G. Chemical Hardness and Density Functional Theory. J. Chem. Sci. 2005, 117, 369–377; https://doi.org/10.1007/bf02708340.Search in Google Scholar

60. Zhan, C. G.; Nichols, J. A.; Dixon, D. A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. The J. Phys. Chem. A 2003, 107 (20), 4184–4195; https://doi.org/10.1021/jp0225774.Search in Google Scholar

61. Vijayaraj, R.; Subramanian, V.; Chattaraj, P. K. Comparison of Global Reactivity Descriptors Calculated Using Various Density Functionals: a QSAR Perspective. J. Chem. Theory and Computat. 2009, 5 (10), 2744–2753; https://doi.org/10.1021/ct900347f.Search in Google Scholar PubMed

62. Mulliken, R. S. The Interaction of Electron Donors and Acceptors. J. Chim. Phys. 1964, 61, 20–38; https://doi.org/10.1051/jcp/1964610020.Search in Google Scholar

63. Weinhold, F. Natural Bond Orbital Analysis: A Critical Overview of Relationships to Alternative Bonding Perspectives. J. Computat. Chem. 2012, 33 (30), 2363–2379; https://doi.org/10.1002/jcc.23060.Search in Google Scholar PubMed

64. Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural Bond Orbital Methods. Wiley Interdiscipl. Rev.: Computat.l Mol. Sci. 2012, 2 (1), 1–42; https://doi.org/10.1002/wcms.51.Search in Google Scholar

65. Poater, J.; Duran, M.; Sola, M.; Silvi, B. Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chem. Rev. 2005, 105 (10), 3911–3947; https://doi.org/10.1021/cr030085x.Search in Google Scholar PubMed

66. Iyam, S. O.; Ogbodo, S. E.; Okafor, E. R.; Runde, M.; Gulack, A. O.; Odey, M. O.; Louis, H.; Edet, U.; Benjamin, I. Elucidating the Antibacterial Efficacy of Thiadiazol Derivative against Carbapenem-Resistant Klebsiella pneumoniae and Pseudomonas aeruginosa: An In-Silico Perspective. Chem. Phys. Impac. 2024; https://doi.org/10.1016/j.chphi.2024.100466.Search in Google Scholar

67. Frieden, E. Noncovalent Interactions: Key to Biological Flexibility and Specificity. J. Chem. Edu. 1975, 52 (12), 754; https://doi.org/10.1021/ed052p754.Search in Google Scholar PubMed

68. Flynn, E. Clin. Pharmacokinet. 2007, 46, 1–2.Search in Google Scholar

69. Dege, N.; Raza, M. A.; Doğan, O. E.; Ağar, T.; Mumtaz, M. W. Theoretical and Experimental Approaches of New Schiff Bases: Efficient Synthesis, X-Ray Structures, DFT, Molecular Modeling and ADMET Studies. J IRAN CHEM SOC 2021, 18, 2345–2368. https://doi.org/10.1007/s13738-021-02194-z.Search in Google Scholar

70. Tatlidil, D.; Raza, M. A.; Dege, N.; Agar, A. A.; Farwa, U.; Rehman, S. U. Therapeutical Potential of Imines; Synthesis, Single Crystal Structure, Computational, Molecular Modeling, and ADMET Evaluation. ACS Omega 2022, 7 (12), 10568–10579. https://doi.org/10.1021/acsomega.2c00102, https://pubs.acs.org/doi/full/10.1021/acsomega.2c00102.Search in Google Scholar PubMed PubMed Central

71. Daina, A.; Michielin, O.; Zoete, V. SwissADME: a Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7 (1); https://doi.org/10.1038/srep42717.Search in Google Scholar PubMed PubMed Central

72. Banerjee, P.; Eckert, A. O.; Schrey, A. K.; Preissner, R. ProTox-II: a Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46 (1), 257–263; https://doi.org/10.1093/nar/gky318.Search in Google Scholar PubMed PubMed Central

73. Chang, Y. C.; Chen, C. P.; Chen, C. C. Predicting Skin Permeability of Chemical Substances Using a Quantitative Structure-Activity Relationship. Procedia Eng. 2012, 45, 875–879; https://doi.org/10.1016/j.proeng.2012.08.252.Search in Google Scholar

74. Hinge, V. K.; Roy, D.; Kovalenko, A. Predicting Skin Permeability Using the 3D-RISM-KH Theory Based Solvation Energy Descriptors for a Diverse Class of Compounds. J. Comput.-Aided Mol. Des. 2019, 33 (6), 605–611; https://doi.org/10.1007/s10822-019-00205-z.Search in Google Scholar PubMed

75. Jetté, L.; Potier, M.; Béliveau, R. P-Glycoprotein Is a Dimer in the Kidney and Brain Capillary Membranes: Effect of Cyclosporin A and SDZ-PSC 833. Biochemistry 1997, 36 (45), 13929–13937; https://doi.org/10.1021/bi970737+.10.1021/bi970737+Search in Google Scholar PubMed

76. Talevi, A.; Bellera, C. L. Drug Metabolism. In The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics; Springer International Publishing: Cham, 2022; pp. 362–368.10.1007/978-3-030-84860-6_6Search in Google Scholar

77. Song, Y.; Li, C.; Liu, G.; Liu, R.; Chen, Y.; Li, W.; Liu, Y.; Zhao, B.; Lu, C. Drug-metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes. Clin. Pharmacokinet. 2021, 60, 585–601; https://doi.org/10.1007/s40262-021-01001-5.Search in Google Scholar PubMed

78. Lipinski, C. A. Rule of Five in 2015 and beyond: Target and Ligand Structural Limitations, Ligand Chemistry Structure and Drug Discovery Project Decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41; https://doi.org/10.1016/j.addr.2016.04.029.Search in Google Scholar PubMed

79. Correia, M. A. Drug Biotransformation. Basic & Clinical Pharmacol. 2018, 53.Search in Google Scholar

80. McGhie, T. K.; Walton, M. C. The Bioavailability and Absorption of Anthocyanins: towards a Better Understanding. Mol. Nutr. Food Res. 2007, 51 (6), 702–713; https://doi.org/10.1002/mnfr.200700092.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2024-0910).


Received: 2024-06-11
Accepted: 2024-10-30
Published Online: 2024-11-18
Published in Print: 2025-10-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0910/pdf
Scroll to top button