Startseite Electronic and optical properties of Sb2Se3 and Sb2S3: theoretical investigations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electronic and optical properties of Sb2Se3 and Sb2S3: theoretical investigations

  • Vinoth Kumar Kasi ORCID logo , Jeyanthinath Mayandi EMAIL logo , Sujin P. Jose , Veerapandy Vasu , Kevin Bethke und Smagul Zh. Karazhanov
Veröffentlicht/Copyright: 28. November 2024

Abstract

In recent developments in solar energy research, Sb2Se3 and Sb2S3 emerge as environment friendly photovoltaic absorber materials, distinguished by their narrow bandgap and high absorption coefficient. Theoretical investigations to determine the electronic structure, effective density of states, dielectric function, and absorption coefficient of Sb2Se3 and Sb2S3 crystals have been performed using first-principle methods. The results reveal band gap values of about 0.822 and 1.757 eV (PBE method), 1.114 and 1.778 eV (HSE06 method) for Sb2Se3 and Sb2S3, respectively. The valence band and conduction band edges are primarily formed by Se 4p, S 3p, and Sb 5p hybridized orbitals. The effective density of states (DOS) exhibit magnitudes on the order of 1019 cm−3. Notably, anisotropic characteristics are observed in the real and imaginary parts of the dielectric function. Furthermore, the absorption coefficient surpasses 105 cm−1  at 1 and 1.2 eV for both Sb2Se3 and Sb2S3. The result indicates that these highly efficient absorber materials are suitable in collecting solar energy.


Corresponding author: Jeyanthinath Mayandi, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India, E-mail:

Acknowledgments:

VKK has received support from INTPART project 309827 funded by the Research Council of Norway. The computations have been performed by using the Norwegian Notur supercomputing facilities through the project nn4608k. All the authors thank Grace Roselin A for her contribution towards modelling. JM thank FIST, MKU RUSA for providing necessary support through project no:002/RUSA/MKU/2020-2021.

  1. Research ethics: Not applicable.

  2. Author contributions: Conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing – original draft preparation – VKK. Visualization, writing – review and editing, supervision – JM, SPJ,VV, KB, and SZK.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: VKK has received support from INTPART project 309827 funded by the Research Council of Norway. The computations have been performed by using the Norwegian Notur supercomputing facilities through the project nn4608k.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Alharbi, F. H.; Kais, S. Theoretical Limits of Photovoltaics Efficiency and Possible Improvements by Intuitive Approaches Learned from Photosynthesis and Quantum Coherence. Renew. Sustain. Energy Rev. 2015, 43, 1073–1089. https://doi.org/10.1016/j.rser.2014.11.101.Suche in Google Scholar

2. Cao, Y.; Zhu, X.; Jiang, J.; Liu, C.; Zhou, J.; Ni, J.; Zhang, J.; Pang, J. Rotational Design of Charge Carrier Transport Layers for Optimal Antimony Trisulfide Solar Cells and Its Integration in Tandem Devices. Sol. Energy Mater. Sol. Cells 2020, 206; https://doi.org/10.1016/j.solmat.2019.110279.Suche in Google Scholar

3. Shrivastav, N.; Yadav, V.; Bhattarai, S.; Madan, J.; Hossain, M. K.; Samajdar, D. P.; Dwivedi, D. K.; Pandey, R. Two-Terminal Tandem Solar Cell with Sb2S3/Sb2Se3 Absorber Pair: Achieving 14% Power Conversion Efficiency. Phys. Scr. 2023, 98 (11), 115110; https://doi.org/10.1088/1402-4896/ad000e.Suche in Google Scholar

4. Dahmardeh, Z.; Saadat, M. Exploring the Potential of Standalone and Tandem Solar Cells with Sb2S3 and Sb2Se3 Absorbers: A Simulation Study. Sci. Rep. 2023, 13 (1); https://doi.org/10.1038/s41598-023-49269-w.Suche in Google Scholar

5. Basak, A.; Singh, U. P. Numerical Modelling and Analysis of Earth Abundant Sb2S3 and Sb2Se3 Based Solar Cells Using SCAPS-1D. Sol. Energy Mater. Sol. Cells 2021, 230; https://doi.org/10.1016/j.solmat.2021.111184.Suche in Google Scholar

6. Koc, H.; Mamedov, A. M.; Deligoz, E.; Ozisik, H. First Principles Prediction of the Elastic, Electronic, and Optical Properties of Sb2S3 and Sb2Se3 Compounds. Solid State Sci. 2012, 14 (8), 1211–1220; https://doi.org/10.1016/j.solidstatesciences.2012.06.003.Suche in Google Scholar

7. Caracas, R.; Gonze, X. First-Principles Study of the Electronic Properties of A2 B3 Minerals, with A = Bi, Sb and B = S, Se. Phys. Chem. Miner. 2005, 32 (4), 295–300; https://doi.org/10.1007/s00269-005-0470-y.Suche in Google Scholar

8. Ben Nasr, T.; Maghraoui-Meherzi, H.; Ben Abdallah, H.; Bennaceur, R. Electronic Structure and Optical Properties of Sb2S3 Crystal. Phys. B Condens. Matter 2011, 406 (2), 287–292; https://doi.org/10.1016/j.physb.2010.10.070.Suche in Google Scholar

9. Maghraoui-Meherzi, H.; Ben Nasr, T.; Dachraoui, M. Synthesis, Structure and Optical Properties of Sb2Se3. Mater. Sci. Semicond. Process. 2013, 16 (1), 179–184; https://doi.org/10.1016/j.mssp.2012.04.019.Suche in Google Scholar

10. Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B Condens Matter 1993, 47 (1), 558–561; https://doi.org/10.1103/physrevb.47.558.Suche in Google Scholar

11. Kresse, G.; Furthmü, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B Condens Matter 1996, 54 (16), 11169–11186; https://doi.org/10.1103/physrevb.54.11169.Suche in Google Scholar

12. Blochl, P. E. Projector Augmented-+rave Method. Phys. Rev. B Condens Matter 1994, 50 (24), 17953–17979. https://doi.org/10.1103/physrevb.50.17953.Suche in Google Scholar

13. Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775; https://doi.org/10.1103/PhysRevB.59.1758.Suche in Google Scholar

14. Monkhorst, H. J.; Pack, J. D. Special Points for Brillonin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192; https://doi.org/10.1103/PHYSREVB.13.5188.Suche in Google Scholar

15. Steinmann, S. N.; Corminboeuf, C. Comprehensive Benchmarking of a Density-Dependent Dispersion Correction. J. Chem. Theory Comput. 2011, 7 (11), 3567–3577; https://doi.org/10.1021/ct200602x.Suche in Google Scholar

16. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. J. Chem. Phys. 2006, 125 (22), 224106; https://doi.org/10.1063/1.2404663.Suche in Google Scholar

17. Karazhanov, S. Z.; Ulyashin, A. G.; Vajeeston, P.; Ravindran, P. Hydrides as Materials for Semiconductor Electronics. Philos. Mag. 2008, 88 (16), 2461–2476; https://doi.org/10.1080/14786430802360362.Suche in Google Scholar

18. Madelung, O. Binary compounds. In Data in Science and Technology, Semiconductors; Madelung, O., Ed.; Springer: Berlin, Heidelberg, 1992; pp 8–52.Suche in Google Scholar

19. Voutsas, G. P.; Papazoglou, A. G.; Rentzeperis, P. J.; Siapkas, D. The Crystal Structure of Antimony Selenide, Sb2Se3. Z. Kristallogr. 1985, 171, 261–268; https://doi.org/10.1524/zkri.1985.171.14.261.Suche in Google Scholar

20. Vadapoo, R.; Krishnan, S.; Yilmaz, H.; Marin, C. Electronic Structure of Antimony Selenide (Sb2Se3) from GW Calculations. Phys. Status Solidi B Basic Res. 2011, 248 (3), 700–705; https://doi.org/10.1002/pssb.201046225.Suche in Google Scholar

21. Bayliss, P.; Nowacki, W. Refinement of the Crystal Structure of Stibnite, Sb2S31. Z. Kristallogr. 1972, 135, 308–315; https://doi.org/10.1524/zkri.1972.135.16.308.Suche in Google Scholar

22. Radzwan, A.; Ahmed, R.; Shaari, A.; Lawal, A.; Ng, Y. X. First-Principles Calculations of Antimony Sulphide Sb2S3. Mal. J. Fund. Appl. Sci. 2017, 13, https://doi.org/10.11113/MJFAS.V13N3.598.Suche in Google Scholar

23. Ngoupo, A. T.; Ouédraogo, S.; Zougmoré, F.; Ndjaka, J. M. B. Numerical Analysis of Ultrathin Sb2Se3-Based Solar Cells by SCAPS-1D Numerical Simulator Device. Chin. J. Phys. 2021, 70, 1–13; https://doi.org/10.1016/j.cjph.2020.12.010.Suche in Google Scholar

24. Baig, F.; Khattak, Y. H.; Shuja, A.; Riaz, K.; Soucase, B. M. Performance Investigation of Sb2Se3 Based Solar Cell by Device Optimization, Band Offset Engineering and Hole Transport Layer in SCAPS-1D. Curr. Appl. Phys. 2020, 20 (8), 973–981; https://doi.org/10.1016/j.cap.2020.06.005.Suche in Google Scholar

25. Li, Z. Q.; Ni, M.; Feng, X. D. Simulation of the Sb2Se3 Solar Cell with a Hole Transport Layer. Mater. Res. Express 2019, 7 (1); https://doi.org/10.1088/2053-1591/ab5fa7.Suche in Google Scholar

26. Julius, M. Device Simulation of Sb2S3 Solar Cells by SCAPS-1D Software, 2019. http://journals.uonbi.ac.ke/index.php/ajps/index.Suche in Google Scholar

27. Xiao, Y.; Wang, H.; Kuang, H. Numerical Simulation and Performance Optimization of Sb2S3 Solar Cell with a Hole Transport Layer. Opt. Mater. (Amst) 2020, 108; https://doi.org/10.1016/j.optmat.2020.110414.Suche in Google Scholar

28. Li, G.; Guo, F.; Zhou, X.; Xue, L.; Huang, X.; Xiao, Y. Design and Simulation of Sb2S3 Solar Cells Based on Monolayer Graphene as Electron Transport Layer. Opt. Mater. (Amst) 2021, 112; https://doi.org/10.1016/j.optmat.2020.110791.Suche in Google Scholar

29. Fox, M.; Bertsch, G. F. Optical Properties of Solids. Am. J. Phys 2002, 70, 1269–1270; https://doi.org/10.1119/1.1691372.Suche in Google Scholar

30. Yang, X.; Singh, D.; Xu, Z.; Wang, Z.; Ahuja, R. An Emerging Janus MoSeTe Material for Potential Applications in Optoelectronic Devices. J. Mater. Chem. C Mater. 2019, 7 (39), 12312–12320; https://doi.org/10.1039/c9tc03936h.Suche in Google Scholar

31. Lahourpour, F.; Boochani, A.; Parhizgar, S. S.; Elahi, S. M. Structural, Electronic and Optical Properties of Graphene-Like Nano-Layers MoX2(X:S,Se,Te): DFT Study. J. Theor. Appl. Phys. 2019, 13 (3), 191–201; https://doi.org/10.1007/s40094-019-0333-4.Suche in Google Scholar

32. Peng, X.; Liao, Y.; Xie, J.; Song, X. Theoretical Investigation of the Electronic Structure and Anisotropic Optical Properties of Quasi-1D Sb2Se3 Photovoltaic Absorber Materials. J. Comput. Electron. 2021, 20 (1), 317–323; https://doi.org/10.1007/s10825-020-01595-2.Suche in Google Scholar

33. Radzwan, A.; Ahmed, R.; Shaari, A.; Lawal, A. First-Principles Study of Electronic and Optical Properties of Antimony Sulphide Thin Film. Optik (Stuttg) 2020, 202; https://doi.org/10.1016/j.ijleo.2019.163631.Suche in Google Scholar

Received: 2024-05-24
Accepted: 2024-10-22
Published Online: 2024-11-28
Published in Print: 2025-07-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0900/html
Button zum nach oben scrollen