Startseite Reaction duration impact on morphological, optical, structural and photoelectrochemical properties of hydrothermally synthesized TiO2 nanorods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reaction duration impact on morphological, optical, structural and photoelectrochemical properties of hydrothermally synthesized TiO2 nanorods

  • Oluwaseun Adedokun ORCID logo EMAIL logo , Abeeb O. Muraina , Peverga R. Jubu , Oluwatosin S. Obaseki , Omonike M. Adedokun ORCID logo , Mahayatun D. J. Ooi und Fong K. Yam EMAIL logo
Veröffentlicht/Copyright: 15. Januar 2025

Abstract

This study involved the hydrothermal synthesis of vertically oriented TiO2 nanorods on FTO substrate. We examined the impact of reaction duration on morphological, optical, structural and photoelectrochemical properties. The formation of TiO2 nanorods was confirmed by the FESEM and AFM results. The formation of TiO2 tetragonal crystal structure with the rutile phase was shown by XRD spectra. The average absorbance of the samples falls as the reaction duration increases, according to UV–vis spectroscopy analysis. According to PEC experiments, each sample demonstrated a strong photocurrent density and good light response in various lighting situations. The highest possible photocurrent density of 91.8 μA/cm2 at 1.2 V vs Ag/AgCl was recorded from TiO2 film with the reaction duration of 5 h (T@5 h). The quick separation and transfer of photogenerated charge carriers was demonstrated, and this result was confirmed by EIS data.


Corresponding authors: Oluwaseun Adedokun, Department of Pure and Applied Physics, Ladoke Akintola University of Technology, P. M. B 4000, Ogbomoso, Nigeria; and Nanotechnology Research Group (NANO+), Ladoke Akintola University of Technology, Ogbomoso, Nigeria, E-mail: ; and Fong K. Yam, School of Physics, University Sains Malaysia (USM), 11800 Penang, Malaysia, E-mail:

Acknowledgement

A.O. acknowledges the support receive from TETFUND Postdoctoral Fellowship Scholarship Award and LAUTECH, Nigeria. Apart from that, one of the authors (F. K. Yam) would like to thank and acknowledge Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Reference Code: (FRGS/1/2020/STG05/USM/02/4), and School of Physics, Universiti Sains Malaysia (USM) for financial and technical support for this work.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: O. Adedokun: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation Visualization, Writing - original draft. A. O. Muraina: Formal analysis, Visualization, Writing - review & editing. P. R. Jubu: Formal analysis, Writing - review & editing. O. S. Obaseki: Formal analysis, Visualization, Writing - review & editing. O. M. Adedokun: Formal analysis, Writing - review & editing. M. D. J. Ooi: Data curation, Writing - review & editing. F. K. Yam: Funding acquisition, Project administration Resources, Supervision, Validation, Writing - review & editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Data available upon request.

References

1. Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. PNAS 2006, 103, 15729–15735; https://doi.org/10.1073/pnas.0603395103.Suche in Google Scholar

2. Shittu, H. A.; Bello, I. T.; Kareem, M. A.; Awodele, M. K.; Sanusi, Y. K.; Adedokun, O. Recent Developments on the Photoanodes Employed in Dye-Sensitized Solar Cell. Mater. Sci. Eng. 2020, 805. https://doi.org/10.1088/1757-899X/805/1/012019.Suche in Google Scholar

3. Adedokun, O.; Sanusi, Y. K.; Awodugba, A. O. Solvent Dependent Natural Dye Extraction and its Sensitization Effect for Dye Sensitized Solar Cells. Optik (Stuttg). 2018, 174, 497–507. https://doi.org/10.1016/j.ijleo.2018.06.064.Suche in Google Scholar

4. Dong, W.; Li, H.; Xi, J.; Mu, J.; Huang, Y.; Ji, Z.; Wu, X. Reduced TiO2 Nanoflower Structured Photoanodes for Superior Photoelectrochemical Water Splitting. J. Alloys Compd. 2017, 724, 280–286. https://doi.org/10.1016/j.jallcom.2017.06.246.Suche in Google Scholar

5. Jubu, P. R.; Chahrour, K. M.; Yam, F. K.; Awoji, O. M.; Yusof, Y.; Choo, E. B. Titanium Oxide Nanotube Film Decorated with β-Ga2O3 Nanoparticles for Enhanced Water Splitting Properties. Sol. Energy 2022, 235, 152–162. https://doi.org/10.1016/j.solener.2022.02.033.Suche in Google Scholar

6. Db, S.; Sk, J. Time Dependent Facile Hydrothermal Synthesis of TiO2 Nanorods and Their Photoelectrochemical Applications. J. Nanomed. Nanotechnol. 2015, 01. https://doi.org/10.4172/2157-7439.s7-004.Suche in Google Scholar

7. Miao, H.; Hu, X.; Fan, J.; Li, C.; Sun, Q.; Hao, Y.; Zhang, G.; Bai, J.; Hou, X. Hydrothermal Synthesis of TiO2 Nanostructure Films and Their Photoelectrochemical Properties. In Appl. Surf. Sci.; Elsevier B.V.: Netherlands, 2015; pp 418–424.Suche in Google Scholar

8. Sun, X.; Sun, Q.; Zhang, Q.; Zhu, Q.; Dong, H.; Dong, L. Significant Effects of Reaction Temperature on Morphology, Crystallinity, and Photoelectrical Properties of Rutile TiO2 Nanorod Array Films. J. Phys. D Appl. Phys. 2013, 46. https://doi.org/10.1088/0022-3727/46/9/095102.Suche in Google Scholar

9. Dey, S.; Roy, S. C. Designing TiO2 Nanostructures through Hydrothermal Growth: Influence of Process Parameters and Substrate Position. Nano Express 2021, 2. https://doi.org/10.1088/2632-959X/abe844.Suche in Google Scholar

10. Nanotubes, T.; Water, P.; Sharifi, T.; Mohammadi, T.; Momeni, M. M.; Kusic, H.; Rokovic, M. K.; Bozic, A. L.; Ghayeb, Y. Influence of Photo-Deposited Pt and Pd onto Chromium Doped Hydrogen Generation. Catalysts 2021, 11, 212; https://doi.org/10.3390/catal11020212.Suche in Google Scholar

11. Shu, C.; Du, H.; Pu, W.; Yang, C.; Gong, J. Trace Amounts of Palladium-Doped Hollow TiO2 Nanosphere as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2020, 46, 1923–1933; https://doi.org/10.1016/j.ijhydene.2020.10.034.Suche in Google Scholar

12. E Asl, S. D.; Saed, A. E.; Sadrnezhaad, S. K. Hierarchical Rutile/anatase TiO2 Nanorod/nanoflower Thin Film: Synthesis and Characterizations. Mater. Sci. Semicond. Process. 2019, 93, 252–259. https://doi.org/10.1016/j.mssp.2019.01.012.Suche in Google Scholar

13. Gupta, T.; Samriti; Cho, J.; Prakash, J. Hydrothermal Synthesis of TiO2 Nanorods: Formation Chemistry, Growth Mechanism, and Tailoring of Surface Properties for Photocatalytic Activities. Mater. Today Chem. 2021, 20. https://doi.org/10.1016/j.mtchem.2021.100428.Suche in Google Scholar

14. Liu, B.; Aydil, E. S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2009, 131, 3985–3990. https://doi.org/10.1021/ja8078972.Suche in Google Scholar

15. Weber, J.; Singhai, R.; Zekri, S.; Kumar, A. One-dimensional Nanostructures: Fabrication, Characterisation and Applications. Int. Mater. Rev. 2008, 53, 235–255. https://doi.org/10.1179/174328008X348183.Suche in Google Scholar

16. Dilbraiz, M. A.; Nawaz, M.; Imtiaz, M.; Ahmad, P.; Haq, S.; Rehman, Z. U.; Ullah, H.; Khandaker, M. U.; Tamam, N.; Sulieman, A.; Bajaber, M. A. Synthesis of One-Dimensional Titanium Oxide Nanowires for Polyvinylidene Fluoride Membrane Optimization. Crystals 2022, 12. https://doi.org/10.3390/cryst12081164.Suche in Google Scholar

17. Ghoderao, K. P.; Jamble, S. N.; Kale, R. B. Influence of Reaction Temperature on Hydrothermally Grown TiO2 Nanorods and Their Performance in Dye-Sensitized Solar Cells. Superlattices Microstruct. 2018, 124, 121–130. https://doi.org/10.1016/j.spmi.2018.09.038.Suche in Google Scholar

18. Bade, B. R.; Rondiya, S.; Bhopale, S. R.; Dzade, N. Y.; Kamble, M. M.; Rokade, A.; Nasane, M. P.; More, M. A.; Jadkar, S. R.; Funde, A. M. Investigation of Growth Mechanism for Highly Oriented TiO2 Nanorods: the Role of Reaction Time and Annealing Temperature. SN Appl. Sci. 2019, 1. https://doi.org/10.1007/s42452-019-0978-2.Suche in Google Scholar

19. Santhi, K.; Navaneethan, M.; Harish, S.; Ponnusamy, S.; Muthamizhchelvan, C. Synthesis and Characterization of TiO2 Nanorods by Hydrothermal Method with Different pH Conditions and Their Photocatalytic Activity. Appl. Surf. Sci. 2020, 500. https://doi.org/10.1016/j.apsusc.2019.144058.Suche in Google Scholar

20. Khizir, H. A.; Abbas, T. A. H. Hydrothermal Synthesis of TiO2 Nanorods as Sensing Membrane for Extended-Gate Field-Effect Transistor (EGFET) pH Sensing Applications. Sens. Actuat. A Phys. 2022, 333. https://doi.org/10.1016/j.sna.2021.113231.Suche in Google Scholar

21. An, G. W.; Mahadik, M. A.; Chae, W. S.; Kim, H. G.; Cho, M.; Jang, J. S. Enhanced Solar Photoelectrochemical Conversion Efficiency of the Hydrothermally-Deposited TiO2 Nanorod Arrays: Effects of the Light Trapping and Optimum Charge Transfer. Appl. Surf. Sci. 2018, 440, 688–699. https://doi.org/10.1016/j.apsusc.2018.01.194.Suche in Google Scholar

22. Peng, X.; Chen, A. Large-scale Synthesis and Characterization of TiO2-Based Nanostructures on Ti Substrates. Adv. Funct. Mater. 2006, 16, 1355–1362. https://doi.org/10.1002/adfm.200500464.Suche in Google Scholar

23. Ding, Q.; Xu, D.; Ding, J.; Fan, W.; Zhang, X.; Li, Y.; Shi, W. ZIF-8 Derived ZnO/TiO2 Heterostructure with Rich Oxygen Vacancies for Promoting Photoelectrochemical Water Splitting. J. Colloid Interf. Sci. 2021, 603, 120–130. https://doi.org/10.1016/j.jcis.2021.06.087.Suche in Google Scholar

24. Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays. Small 2009, 5, 104–111. https://doi.org/10.1002/smll.200800902.Suche in Google Scholar

25. Bredar, A. R. C.; Chown, A. L.; Burton, A. R.; Farnum, B. H. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Appl. Energy Mater. 2020, 3, 66–98. https://doi.org/10.1021/acsaem.9b01965.Suche in Google Scholar

26. Wang, H.; Huang, X.; Li, W.; Gao, J.; Xue, H.; Li, R. K. Y.; Mai, Y. W. TiO2 Nanoparticle Decorated Carbon Nanofibers for Removal of Organic Dyes. Coll. Surf. A Physicochem. Eng. Asp. 2018, 549, 205–211. https://doi.org/10.1016/j.colsurfa.2018.04.017.Suche in Google Scholar

27. Deng, Y.; Ma, Z.; Ren, F.; Wang, G.; Volinsky, A. A. Enhanced Morphology and Photoelectric Properties of One-Dimensional TiO2 Nanorod Array Films. Chem. Phys. Lett. 2019, 724, 42–49. https://doi.org/10.1016/j.cplett.2019.03.054.Suche in Google Scholar

28. Feng, T.; Yam, F. K. The Influence of Hydrothermal Treatment on TiO2 Nanostructure Films Transformed from Titanates and Their Photoelectrochemical Water Splitting Properties. Surf. Interf. 2023, 38. https://doi.org/10.1016/j.surfin.2023.102767.Suche in Google Scholar

29. Zhang, X.; Zeng, M.; Zhang, J.; Song, A.; Lin, S. Improving Photoelectrochemical Performance of Highly-Ordered TiO2 Nanotube Arrays with Cosensitization of PbS and CdS Quantum Dots. RSC Adv. 2016, 6, 8118–8126. https://doi.org/10.1039/c5ra22964b.Suche in Google Scholar

30. Calva-Yáñez, J. C.; de la Fuente, M. S.; Ramírez-Vargas, M.; Rincón, M. E. Photoelectrochemical Performance and Carrier Lifetime of Electrodes Based on MWCNT-Templated TiO2 Nanoribbons. Mater. Renew. Sustain. Energy 2018, 7. https://doi.org/10.1007/s40243-018-0126-8.Suche in Google Scholar

Received: 2024-03-24
Accepted: 2024-10-25
Published Online: 2025-01-15
Published in Print: 2025-07-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0810/html
Button zum nach oben scrollen