Visible light sensitive BiVO4–TiO2 nanocomposites for photocatalytic dye degradation
-
Salija Padinjare Veetil
, Anusree Thavarool Puthiyadath
, Sujith Kizhakke Veedu
und Baiju Kizhakkekilikoodayil Vijayan
Abstract
The hydrothermal approach was used to prepare visible light active BiVO4–TiO2 nanosheet composites in varying molar ratios. The photoluminescence (PL) spectrum, X-ray photoelectron spectroscopy (XPS), UV-Visible Diffuse Reflectance Spectroscopy (DRS), Transmission electroscopy (TEM), Brunauer-Emmett-Teller (BET) and field emission scanning electron microscopy (FESEM), were used to analyze the photocatalysts and composites. Photocatalytic activity of BiVO4–TiO2 composites was investigated by decolorizing methylene blue. Out of four different molar ratio BiVO4–TiO2 composites with a molar ratio of 3:1 BiVO4 TiO2 composite showed enhanced photocatalytic activity which is further proved by photoluminescence investigation of coumarin and Scavenger test. The DRS of BiVO4 TiO2 composite showed red shift in optical absorption. The enhanced photocatalytic activity is due to minimizing electron hole recombination by making composite with TiO2.
Acknowledgments
One of the author Salija Padinjare Veetil acknowledges with gratitude the Department of Chemistry/Nanoscience, Kannur University, Swami Ananda Theertha Campus, Payyannur 670307, India, for help in providing facilities of material synthesis and characterization.
-
Research ethics: The local Institutional Review Board deemed the study exempt from review.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Author contributions: Salija Padinjare Veetil (First Author). Jayendu Koodali Edam, Anusree Thavarool Puthiyadath, Sujith Kizhakke Veedu, Baiju Kizhakkekilikoodayil Vijayan (Corresponding Author). All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: All other authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Sakthivel, S.; Paramasivam, S.; Velusamy, P.; Infanta, J.; Doss, J. A.; Ragavendran, V.; Mayandi, J.; Arumugam, S.; Kim, I. Experimental Investigation of Structural, Morphological, and Optical Characteristics of SrTiO3 Nanoparticles Using a Shock Tube for Photocatalytic Applications. Z. Phys. Chem. 2024, 238, 1863–1885; https://doi.org/10.1515/zpch-2023-0486.Suche in Google Scholar
2. Velmurugan, G.; Sivaprakash, R. G. P.; Viji, A. Shin Hum Cho and Ikhyun Kim 3, Functionalization of Fluorine on the Surface of SnO2–Mg Nanocomposite as an Efficient Photocatalyst for Toxic Dye Degradation. Nanomaterials 2023, 13, 2494.Suche in Google Scholar
3. Aarthi1, A.; Umadevi, M.; Parimaladevi, R.; Sathe, G. V.; Arumugam, S.; Sivaprakash, P. A Negatively Charged Hydrophobic Hemi-Micelle of Fe3O4/Ag MNP Role towards SERS, Photocatalysis and Bactericidal. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1469–1479.Suche in Google Scholar
4. Wang, W.; Wang, X.; Zhou, C.; Du, B.; Cai, J.; Feng, G.; Zhang, R. Bi2S3-Nanowire-Sensitized BiVO4 Sheets for Enhanced Bi2S3 -Nanowire-Sensitized BiVO4 Sheets for Enhanced Visible-Light Photo-Electrochemical Activities. J. Phys. Chem. C 2017, 121, 19104–19111; https://doi.org/10.1021/acs.jpcc.7b06838.Suche in Google Scholar
5. Dahl, M.; Liu, Y.; Yin, Y. Composite Titanium Dioxide Nanomaterials. Chem. Rev. 2014, 114, 9853–9889; https://doi.org/10.1021/cr400634p.Suche in Google Scholar
6. Chen, X.; *a Lei Liub and Fuqiang Huang Black titanium dioxide (TiO2). nanomaterials Chem. Soc. Rev. 2015, 44, 1861.Suche in Google Scholar
7. Obregón, S.; Caballero, A.; Colón, G. Environmental Hydrothermal Synthesis of BiVO4: Structural and Morphological Influence on the Photocatalytic Activity. Appl. Catal. 2012, 117–118.Suche in Google Scholar
8. Zhang, L.; Man, Y.; Zhu, Y. Effects of Mo Replacement on the Structure and Visible-Light-Induced Photocatalytic Performances of Bi 2 WO 6 Photocatalyst. ACS Catal. 2011, 1 (8), 841–848; https://doi.org/10.1021/cs200155z.Suche in Google Scholar
9. Gao, B. F.; Chen, X.; Yin, K.; Dong, S.; Ren, Z.; Yuan, F.; Yu, T.; Zou, Z.; Liu, J. Kuibo-Yin Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Adv. Mater. 2007, 19, 2889–2892; https://doi.org/10.1002/adma.200602377.Suche in Google Scholar
10. Tang, J.; Zou, Z.; Jinhua, Y. E.; Tang, J.; Zou, Z.; Ye, J. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation. Angew. Chem., Int. Ed. 2004, 43 (34), 4463–4466; https://doi.org/10.1002/anie.200353594.Suche in Google Scholar
11. Zhang, A.; Zhang, J. Z. A.; Zhang, J. Hydrothermal Processing for Obtaining of BiVO4 Nanoparticles. Mater. Lett. 2009, 63, 1939–1942; https://doi.org/10.1016/j.matlet.2009.06.013.Suche in Google Scholar
12. Yu, C.; Dong, S.; Feng, J.; Sun, J.; Hu, L.; Li, Y.; Sun, J. Shuying Dong Etal BiVO 4 as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis. Environ. Sci. Pollut. Res. 2014, 21, 2837–2845; https://doi.org/10.1007/s11356-013-2224-6.Suche in Google Scholar
13. Sun, J.; Chen, G.; Wu, J.; Dong, H.; Xiong, G. Bismuth Vanadate Hollow Spheres: Bubble Template Synthesis and Enhanced Photocatalytic Properties for Photodegradation. Appl. Catal. B Environ. 2013, 132–133, 304–314; https://doi.org/10.1016/j.apcatb.2012.12.002.Suche in Google Scholar
14. Guan, M.; Ma, D.; Hu, S.; Chen, Y.; Huang, S. From Hollow Olive-Shaped BiVO 4 to N – P Core – Shell BiVO4@Bi2O3 Microspheres: Controlled Synthesis and Enhanced Visible-Light-Responsive Photocatalytic Properties. Inorg. Chem. 2011, 50, 3; https://doi.org/10.1021/ic101961z.Suche in Google Scholar
15. Su, J.; Guo, L.; Yoriya, S.; Grimes, C. A. Aqueous Growth of Pyramidal-Shaped BiVO4 Nanowire Arrays and Structural Characterization: Application to Photoelectrochemical Water Splitting. Cryst. Growth Des. 2010, 10, 2; https://doi.org/10.1021/cg9012125.Suche in Google Scholar
16. Hernández, S.; Thalluri, S. M.; Sacco, A.; Bensaid, S.; Saracco, G.; Russo, N. Photo-catalytic Activity of BiVO4 Thin-Film Electrodes for Solar-Driven Water Splitting. Appl. Catal., A 2015, 504, 266–271; https://doi.org/10.1016/j.apcata.2015.01.019.Suche in Google Scholar
17. Thalluri, S. M.; Hernández, S.; Bensaid, S.; Saracco, G.; Russo, N. Green-Synthesized W- and Mo-Doped BiVO4 Oriented along the {040} Facet with Enhanced Activity for the Sun-Driven Water Oxidation. Appl. Catal. B Environ. 2016, 180, 630–636; https://doi.org/10.1016/j.apcatb.2015.07.029.Suche in Google Scholar
18. Zhang, L.; Chen, D.; Jiao, X. Monoclinic Structured BiVO4 Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties. J. Phys. Chem. B 2006, 110 (6), 2668–2673; https://doi.org/10.1021/jp056367d.Suche in Google Scholar
19. Wang, D.; Jiang, H.; Zong, X.; Xu, Q.; Ma, Y.; Li, C. Crystal Facet Dependence of Water Oxidation on BiVO4 Sheets under Visible Light Irradiation. Chem. - A Eur.J 2011, 17 (4), 1275–1282; https://doi.org/10.1002/chem.201001636.Suche in Google Scholar
20. Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysis: Fundamentals and Applications. Jpn. J. Appl. Phys. 2005, 44, 8269; https://doi.org/10.1143/jjap.44.8269.Suche in Google Scholar
21. Wu, L. Q.; Xu, N.; Shi, J. Preparation of a Palladium Composite Membrane by an Improved Electroless Plating Technique. Ind. Eng. Chem. Res. 2000, 39 (2), 342–348; https://doi.org/10.1021/ie9904697.Suche in Google Scholar
22. Xie, M.; Feng, Y.; Fu, X.; Luan, P.; Jing, L. Phosphate-bridged TiO2–BiVO4 Nanocomposites with Exceptional Visible Activities for Photocatalytic Water Splitting. J. Alloys Compd. 2015, 631, 120–124; https://doi.org/10.1016/j.jallcom.2015.01.091.Suche in Google Scholar
23. Zhu, Y.; Shah, M. W.; Wang, C.; Wang. Insight into the Role of Ti3+ in Photocatalytic Performance of Shuriken-Shaped BiVO4/TiO2–X Heterojunction. C Appl. Catal. B Environ. 2017, 203, 526–532; https://doi.org/10.1016/j.apcatb.2016.10.056.Suche in Google Scholar
24. Wetchakun, N.; Chainet, S.; Phanichphant, S.; Wetchakun, K. Efficient Photocatalytic Degradation of Methylene Blue over BiVO4/TiO2 Nanocomposites. Ceram. Int. 2015, 41, 5999–6004; https://doi.org/10.1016/j.ceramint.2015.01.040.Suche in Google Scholar
25. Yang, R. Z. Z.; Hu, C.; Zhong, S.; Zhang, L.; Liu, B.; Wang, W. One-step Preparation (3D/2D/2D) BiVO4/FeVO4@rGO Heterojunction Composite Photocatalyst for the Removal of Tetracycline and Hexavalent Chromium Ions in Water. Chem. Eng. J. 2020, 390, 124522.Suche in Google Scholar
26. Li, X.; Wang, S.; Wang, K.; Yang, J.; Wang, K.; Han, C.; Li, L.; Yu, R. Yong Zhang Solution-Processed Bi2S3/BiVO4/TiO2 Ternary Heterojunction Photoanode with Enhanced Photoelectrochemical Performance. Nanotechnology 2023, 2022–0550.Suche in Google Scholar
27. Soares, C.; de Almeida, J. C.; Koga, R. H.; Del Duque, D. M. D. S.; da Silva, G. T.; Ribeiro, C.; de Mendonça, V. R. Jéssica and Etal TiO2/BiVO4 Composite from Preformed Nanoparticles for Heterogeneous Photocatalysis Author Links Open Overlay panelFernando. Mater. Chem. Phy., 2022, 290, 15, 126588, https://doi.org/10.1016/j.matchemphys.2022.126588.Suche in Google Scholar
28. Wetchakun, N.; Chainet, S.; Phanichphant, S.; Wetchakun, K. Efficient Photocatalytic Degradation of Methylene Blue over BiVO4/TiO2 Nanocomposites. Ceram. Int. 2015, 41 (4), 5999–6004; https://doi.org/10.1016/j.ceramint.2015.01.040.Suche in Google Scholar
29. Nisha, V.; Palantavida, S.; Kizhakkekilikoodayil Vijayan, B. Visible Light Photoactivity of 2D Nanocomposites of CdS-TiO2 and CdS- TiO2-rGO. Mater.Today Proc 2020, 41, 655–659; https://doi.org/10.1016/j.matpr.2020.05.373.Suche in Google Scholar
30. Kareem, M. A.; Bello, I. T.; Shittu, H. A.; Shivaprakash, P.; Adeodokun, O.; Arumugam, S. Synthesis, Charecterization and Photocatalytic Application of Silver Doped Zinc Oxide Nanoparticles. Cleaner Mater. 2022, 3, 100041; https://doi.org/10.1016/j.clema.2022.100041.Suche in Google Scholar
31. Vandana, S.; Akshay Sidhi, P.; Anasb, S.; Hinderc, S. J.; Pillaide, S. C.; Kizhakkekilikoodayil Vijayana, B. One Pot Synthesis of Multi-Functional B Doped G-C3n4-Praseodymium Oxide Nanocomposites for Colorimetric Detection of Hg2+ Ion and Solar Photocatalytic Removal of Toxic Water Pollutants. J. Water Process Eng. 2024, 62, 105341; https://doi.org/10.1016/j.jwpe.2024.105341.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Evaluation of water quality and heavy metal contamination in Cauvery River: Tamil Nadu region India
- Investigating the multifunctionality of Cu2+ doped LaSrMnO3: understanding structural, optical, and magnetic responses
- Facile hydrothermal synthesis of 2D tin sulphide (SnS2) nanoflakes for supercapacitor applications
- Investigation of structural, magnetic and morphological properties of Zinc and Cobalt-doped Nickel Ferrites
- Visible light sensitive BiVO4–TiO2 nanocomposites for photocatalytic dye degradation
- Facile synthesis and characterization of zinc molybdate (ZnMoO4) nanosheets for electrochemical supercapacitor application
- Electronic and optical properties of Sb2Se3 and Sb2S3: theoretical investigations
- Reaction duration impact on morphological, optical, structural and photoelectrochemical properties of hydrothermally synthesized TiO2 nanorods
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Evaluation of water quality and heavy metal contamination in Cauvery River: Tamil Nadu region India
- Investigating the multifunctionality of Cu2+ doped LaSrMnO3: understanding structural, optical, and magnetic responses
- Facile hydrothermal synthesis of 2D tin sulphide (SnS2) nanoflakes for supercapacitor applications
- Investigation of structural, magnetic and morphological properties of Zinc and Cobalt-doped Nickel Ferrites
- Visible light sensitive BiVO4–TiO2 nanocomposites for photocatalytic dye degradation
- Facile synthesis and characterization of zinc molybdate (ZnMoO4) nanosheets for electrochemical supercapacitor application
- Electronic and optical properties of Sb2Se3 and Sb2S3: theoretical investigations
- Reaction duration impact on morphological, optical, structural and photoelectrochemical properties of hydrothermally synthesized TiO2 nanorods