Home Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
Article
Licensed
Unlicensed Requires Authentication

Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli

  • Anandhu Mohan , Madhappan Santhamoorthy , Ranganathan Suresh ORCID logo , Munusamy Ashwini , Natarajan Arumugam , Abdulrahman I. Almansour , Loganathan Guganathan , Tamiloli Devendhiran , Mei-Ching Lin , Seong-Cheol Kim , Keerthika Kumarasamy EMAIL logo and Thi Tuong Vy Phan EMAIL logo
Published/Copyright: May 5, 2025

Abstract

This work describes the synthesis of periodic mesoporous organosilica (PMO@Py NPs) nanocarriers that integrate the hydroxyl-pyridyl (HP) ligand and could be used as an efficient drug delivery system in the presence of varying pH stimuli. PMO@Py NPs were produced by adapting the sol-gel co-condensation process. X-ray diffraction (XRD), Fourier-transform infrared (FTIR), N2 adsorption-desorption analysis, particle size analysis, and zeta potential measurements were used to characterize the produced PMO@Py NPs. The developed silica nanocarriers’ surface morphology was observed by scanning electron microscopy (SEM) study. The content of integrated organic functional groups in the PMO@Py NPs was determined using elemental analysis and thermogravimetric (TG) analysis. To ascertain the loading and pH-responsive release efficiency of the PMO@Py NPs under various pH (pH 7.4, 6.2, and 4.5) circumstances, respectively, the hydrophilic anticancer agent 5-Fu was utilized as a model drug. Furthermore, in MDA-MB-231 cells, the biocompatibility of the PMO@Py NPs was assessed. Additionally, utilizing samples of red blood cells, produced PMO@Py NPs’ hemocompatibility was assessed and compared with that of the positive control, Triton-X. Overall, the results showed that the HP-PMO@Py NPs that have been generated are biocompatible, have a high drug loading capacity (about 85 %), and release the drugs that were loaded under different pH stimulation conditions.


Corresponding authors: Keerthika Kumarasamy, Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, ROC, E-mail: ; and Thi Tuong Vy Phan, Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Vietnam; and Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Vietnam, E-mail:
Anandhu Mohan, Madhappan Santhamoorthy, and Ranganathan Suresh contributed equally to this work.

Acknowledgments

This project was carried out with the support of the “2024 System Semiconductor Technology Development Support Project” of Chungbuk Technopark. The project was funded by Researchers Supporting Project number (RSP2025R143), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Anandhu Mohan, Munusamy Ashwini, Madhappan Santhamoorthy, Ranganathan Suresh, Nataraj Arumugam, Loganathan Guganathan, Tamiloli Devendhiran: Conceptualization, Methodology, Characterization and data analysis, original draft writing. Mei-Ching Lin, Keerthika Kumarasamy, Mei-Ching Lin, Thi Tuong vy Phan: Data curation and rearrangement, Draft revising. Abdulrahman I. Almansour, Seong-Cheol Kim: Supervision, review, and editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: The authors declares that have not used any AI-based tools.

  5. Conflict of interest: The authors have no conflicts to declare.

  6. Research funding: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3052258). The project was funded by Researchers Supporting Project number (RSP2024R143), King Saud University, Riyadh, Saudi Arabia.

  7. Data availability: Data availability on request.

References

1. Yusef, A.; Almotairy, A. R. Z.; Henidi, H.; Alshehri, O. Y.; Aldughaim, S. Polymers 2023, 15 (7), 1596; https://doi.org/10.3390/polym15071596.Search in Google Scholar PubMed PubMed Central

2. Baig, N.; Kammakakam, I.; Falath, W. Mater. Mater. Adv. 2021, 2, 1821–1871; https://doi.org/10.1039/d0ma00807a.Search in Google Scholar

3. Cheng, X.; Xie, Q.; Sun, Y. Front Bioeng. Biotechnol. 2023, 11, 1177151; https://doi.org/10.3389/fbioe.2023.1177151.Search in Google Scholar PubMed PubMed Central

4. Moorthy, M. S.; Cho, H. J.; Yu, E. J.; Jung, Y. S.; Ha, C. S. Chem. Commun. 2013, 49, 8758; https://doi.org/10.1039/c3cc42513d.Search in Google Scholar PubMed

5. Moorthy, M. S.; Park, J. H.; Bae, J. H.; Kim, S. H.; Ha, C. S. J. Mater. Chem. B 2014, 2, 6487; https://doi.org/10.1039/c4tb00808a.Search in Google Scholar PubMed

6. Parambadath, S.; Rana, V. K.; Moorthy, S.; Chu, S. W.; Park, S. K.; Lee, D.; Sung, G.; Ha, C. S. J. Solid State Chem. 2011, 184, 1208; https://doi.org/10.1016/j.jssc.2011.03.003.Search in Google Scholar

7. Moorthy, M. S.; Park, S. S.; Selvaraj, M.; Ha, C. S. J. Nanosci. Nanotechnol. 2014, 14, 8891; https://doi.org/10.1166/jnn.2014.9957.Search in Google Scholar PubMed

8. Croissant, G. J.; Fatieiev, Y.; Almalik, A.; Khashab, N. M. Adv. Healthc. Mater. 2018, 7, 1700831; https://doi.org/10.1002/adhm.201700831.Search in Google Scholar PubMed

9. Tsai, M. J.; Chang, C. Y.; Wu, J. Y.. J. Solid State Chem. 2022, 307, 122863; https://doi.org/10.1016/j.jssc.2021.122863.Search in Google Scholar

10. Li, H.; Yu, H.; Zhu, C.; Hu, J.; Du, M.; Zhang, F.; Yang, D. RSC Adv. 2016, 6, 94160; https://doi.org/10.1039/c6ra17213j.Search in Google Scholar

11. Moorthy, M. S.; Park, S. S.; Fuping, D.; Hong, S. H.; Selvaraj, M.; Ha, C. S.. J. Mater. Chem. 2012, 22, 9100; https://doi.org/10.1039/c2jm16341a.Search in Google Scholar

12. Ramkumar, V.; Raorane, C. J.; Christy, H. J.; Anandhi, S.; Santhamoorthy, M.; Kamachiyappan, P.; Ashokkumar, A.; Balamurugan, S.; Kim, S. C. J. Mol. Struct. 2023, 1292, 136109; https://doi.org/10.1016/j.molstruc.2023.136109.Search in Google Scholar

13. Moorthy, M. S.; Kim, M. J.; Bae, J. H.; Park, S. S.; Saravanan, N.; Kim, S. H.; Ha, C. S. Eur. J. Inorg. Chem. 2013, 2013, 3028; https://doi.org/10.1002/ejic.201300118.Search in Google Scholar

14. Jang, B.; Moorthy, M. S.; Manivasagan, P.; Xu, L.; Song, K.; Lee, K. D.; Kwak, M.; Oh, J.; Jin, J. O. Oncotarget 2018, 9, 12649; https://doi.org/10.18632/oncotarget.23898.Search in Google Scholar PubMed PubMed Central

15. Thirupathi, K.; Santhamoorthy, M.; Radhakrishnan, S.; Ulagesan, S.; Nam, T. J.; Phan, T. T. V.; Kim, S. C. Pharmaceutics 2023, 15, 795; https://doi.org/10.3390/pharmaceutics15030795.Search in Google Scholar PubMed PubMed Central

16. Moritz, M.; Laniecki, M. Appl. Surface Sci. 2012, 258, 7523.10.1016/j.apsusc.2012.04.076Search in Google Scholar

17. Moorthy, M. S.; Bae, J. H.; Kim, M. J.; Kim, S. H.; Ha, C. S. Part. Part. Syst. Charact. 2013, 12, 1044.10.1002/ppsc.201300164Search in Google Scholar

18. Bharathiraja, S.; Seo, H.; Manivasagan, P.; Moorthy, M. S.; Park, S.; Oh, J. Molecules 2016, 21, 1470; https://doi.org/10.3390/molecules21111470.Search in Google Scholar PubMed PubMed Central

19. Phan, T. T. V.; Bharathiraja, S.; Moorthy, M. S.; Manivasagan, P.; Lee, K. D.; Oh, J. RSC Adv. 2017, 7, 35027; https://doi.org/10.1039/c7ra02140b.Search in Google Scholar

20. Song, Y.; Li, Y.; Xu, Q.; Liu, Z. Int. J. Nanomed. 2016, 12, 87; https://doi.org/10.2147/ijn.s117495.Search in Google Scholar PubMed PubMed Central

21. Thenmozhi, R.; Moorthy, M. S.; Sivaguru, J.; Manivasagan, P.; Bharathiraja, S.; Oh, Y.; Oh, J. J. Nanosci. Nanotechnol. 2019, 19, 1951; https://doi.org/10.1166/jnn.2019.15399.Search in Google Scholar PubMed

22. Bui, N. Q.; Cho, S. W.; Moorthy, M. S.; Park, S. M.; Piao, Z.; Nam, S. Y.; Kang, H. W.; Kim, C. S.; Oh, J. Sci. Rep. 2018, 8, 2000; https://doi.org/10.1038/s41598-018-20139-0.Search in Google Scholar PubMed PubMed Central

23. Mishra, A.; Sharma, S.; Gupta, B. J. Appl. Polym. Sci. 2011, 121, 2705; https://doi.org/10.1002/app.33884.Search in Google Scholar

24. Zhenbang, H.; Yongchun, D.; Siming, D. Mater. Design. 2010, 31, 2784.Search in Google Scholar

25. Bharathiraja, S.; Manivasagan, P.; Oh, Y. O.; Moorthy, M. S.; Seo, H.; Bui, N. Q.; Oh, J. Int. J. Pharm. 2017, 517, 216; https://doi.org/10.1016/j.ijpharm.2016.12.020.Search in Google Scholar PubMed

26. Moorthy, M. S.; Kim, H. B.; Bae, J. H.; Kim, S. H.; Ha, C. S. RSC Adv. 2016, 6, 29106; https://doi.org/10.1039/c5ra28143a.Search in Google Scholar

27. Oh, Y.; Moorthy, M. S.; Manivasagan, P.; Bharathiraja, S.; Oh, J. Biochimie 2017, 133, 7; https://doi.org/10.1016/j.biochi.2016.11.012.Search in Google Scholar PubMed

28. Manivasagan, P.; Bui, N. Q.; Bharathiraja, S.; Moorthy, M. S.; Oh, Y. O.; Song, K.; Seo, H.; Yoon, M.; Oh, J. Sci. Rep. 2017, 7, 43593.10.1038/srep43593Search in Google Scholar PubMed PubMed Central

29. Moorthy, M. S.; Kim, H. B.; Sung, A. R.; Bae, J. H.; Kim, S. H.; Ha, C. S. Micropor. Mesopor. Mater. 2014, 194, 219; https://doi.org/10.1016/j.micromeso.2014.03.043.Search in Google Scholar

30. Santhamoorthy, M.; Thirupathi, K.; Periyasamy, T.; Thirumalai, D.; Ramkumar, V.; Kim, S. C. New J. Chem. 2021, 45, 20641; https://doi.org/10.1039/d1nj03520g.Search in Google Scholar

31. Santhamoorthy, M.; Kunasekaran, U.; Thirupathi, K.; Thirumalai, D.; Kim, S. C. Mater. Lett. 2022, 313, 131786; https://doi.org/10.1016/j.matlet.2022.131786.Search in Google Scholar

32. Madhappan, S.; Kim, S. H.; Huh, P.; Jung, Y. S.; Kim, S. C. Env. Res. 2023, 231, 116171.10.1016/j.envres.2023.116172Search in Google Scholar PubMed

33. Santhamoorthy, M.; Thirupathi, K.; Kumar, S. S. D.; Pandiaraj, S.; Rahaman, M.; Phan, T. T. V.; Kim, S. C. Int. J. Biomacromol. 2023, 244, 125467; https://doi.org/10.1016/j.ijbiomac.2023.125467.Search in Google Scholar PubMed

34. Santhamoorthy, M.; Thirupathi, K.; Krishnan, S.; Guganathan, L.; Dave, S.; Phan, T. T. V.; Kim, S. C. Magnetochem 2023, 9, 81; https://doi.org/10.3390/magnetochemistry9030081.Search in Google Scholar

35. Moorthy, M. S.; Oh, Y.; Bharathiraja, S.; Manivasagan, P.; Rajarathinam, T.; Jang, B.; Phan, T. T. V.; Jang, H.; Oh, J. RSC Adv. 2016, 6, 110444; https://doi.org/10.1039/c6ra23470d.Search in Google Scholar

36. Thirupathi, K.; Raorane, C. J.; Ramkumar, V.; Ulagesan, S.; Moorthy, M. S.; Raj, V.; Krishnakumar, G. S.; Phan, T. T. V.; Kim, S. C. Gels 2023, 9, 35; https://doi.org/10.3390/gels9010035.Search in Google Scholar PubMed PubMed Central

37. Sana, S. S.; Santhamoorthy, M.; Haldar, R.; Raorane, C. J.; Iravani, S.; Varma, R. S.; Kim, S. C. Process Biochem. 2023, 132, 200; https://doi.org/10.1016/j.procbio.2023.06.022.Search in Google Scholar

38. Phan, T. T. V.; Santhamoorthy, M. Mater. Proceedings 2023, 14, 71.10.3390/IOCN2023-14468Search in Google Scholar

39. Thirupathi, K.; Phan, T. T. V.; Santhamoorthy, M.; Ramkumar, V.; Kim, S. C. Polymers 2022, 15, 167; https://doi.org/10.3390/polym15010167.Search in Google Scholar PubMed PubMed Central

40. Phan, T. T. V.; Bui, N. Q.; Moorthy, M. S.; Lee, K. D.; Oh, J. Nanoscale Res. Lett. 2017, 12, 1.10.1186/s11671-017-2337-9Search in Google Scholar PubMed PubMed Central

41. Moorthy, M. S.; Bharathiraja, S.; Manivasagan, P.; Oh, Y.; Jang, B.; Phan, T. T. V.; Oh, J. J. Porous Mater. 2018, 25, 119; https://doi.org/10.1007/s10934-017-0425-y.Search in Google Scholar

42. Moorthy, M. S.; Bharathiraja, S.; Manivasagan, P.; Lee, K. D.; Oh, J. MedChemComm. 2017, 8, 1797; https://doi.org/10.1039/c7md00270j.Search in Google Scholar PubMed PubMed Central

43. Park, S. S.; Moorthy, M. S.; Ha, C. S. NPG Asia Mater. 2014, 6, e96.10.1038/am.2014.13Search in Google Scholar

44. Tapaswi, P. K.; Moorthy, M. S.; Park, S. S.; Ha, C. S. J. Solid State Chem. 2014, 211, 191; https://doi.org/10.1016/j.jssc.2013.12.028.Search in Google Scholar

45. Santhamoorthy, M.; Vanaraj, R.; Thirupathi, K.; Ulagesan, S.; Nam, T. J.; Phan, T. T. V.; Kim, S. C. Gels 2023, 9, 363; https://doi.org/10.3390/gels9050363.Search in Google Scholar PubMed PubMed Central

46. Santhamoorthy, M.; Phan, T. T. V.; Ramkumar, V.; Raorane, C. J.; Thirupathi, K.; Kim, S. C. Polymers 2022, 14, 4128.10.3390/polym14194128Search in Google Scholar PubMed PubMed Central

47. Gisbert-Garzaran, M.; Lozano, D.; Matsumoto, K.; Komatsu, A.; Manzano, M.; Tamanoi, F.; Vallet-Regi, M. ACS Appl. Mater. Interfaces 2021, 13, 9656; https://doi.org/10.1021/acsami.0c21507.Search in Google Scholar PubMed PubMed Central

Received: 2024-03-15
Accepted: 2025-04-11
Published Online: 2025-05-05
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0773/html
Scroll to top button