Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
-
Rangarajan Nagalakshmi
, Vadivel Balachandran, Badiadka Narayana
, Fahd Alharethy und Sivasubramani Divya
Abstract
A novel crystal of the pyridine derivative is 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1- isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile (AHMIPC). It has been synthesized and studied by computational and experimental methods. We conducted the quantum chemical investigation using DFT calculations that employed two different basis sets. The molecule under review’s potential energy distribution (PED) was determined using VEDA4 analysis. The study’s findings have been correlated to the observed FT-IR and FT-Raman spectra. Nuclear magnetic resonance (NMR) determined the molecule’s carbon (13C) and proton (1H) chemical shifts. We looked at the Local Orbital Locator (LOL) and Electron Localization Function (ELF) methods to figure out how many electrons were in the chemical’s bonding and anti-bonding regions. The reduced density gradient (RDG) has provided further characterization of the non-covalent interactions (NCI). We estimated the ultraviolet (UV) visible spectrum using the time-dependent (TD) DFT method, and demonstrated the changes in electronic structure involved in the compound’s gaseous phase by comparing the estimated and observed spectra. The compound’s stability and the redistribution of charges were evaluated through Natural Bond Orbital (NBO) studies. A comprehensive investigation of the MEP for the title molecule has been carried out using quantum chemical calculations. Reports are made on the HUMO-LUMO gap and other electronic properties. The potential biological activities of the AHMIPC compound were supported by the Bioactivity Score, Drug-Likeness, and ADMET studies, which also sparked interest in developing it as a viable candidate. The pharmacokinetics and drug ability of AHMIPC are flawless. Using molecular docking analysis to investigate antineoplastic (solid tumour) activity, it was found that the AHMIPC molecule can function as a potent lung cancer inhibitor.
Acknowledgments
The author, RN thanks Arignar Anna Government Arts College for providing the facility. The Authors extend their thanks to the Researchers Supporting Project Number (RSP2025R160), King Saud University, Riyadh, Saudi Arabia.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have read and agreed to the published version of the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: Not applicable.
-
Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: The author, RN thanks Arignar Anna Government Arts College for providing the facility. The Authors extend their thanks to the Researchers Supporting Project Number (RSP2025R160), King Saud University, Riyadh, Saudi Arabia.
-
Data availability: All the data used in the manuscript are within the manuscript.
References
1. Kumar, A. D.; Vivek, H. K.; Srinivasan, B.; Naveen, S.; Kumara, K.; Lokanath, N. K.; Byrappa, K.; Kumar, K. A. Design, Synthesis, Characterization, Crystal Structure, Hirshfeld Surface Analysis, DFT Calculations, Anticancer, Angiogenic Properties of New Pyrazole Carboxamide Derivatives. J. Mol. Struct. 2021, 1235; https://doi.org/10.1016/j.molstruc.2021.130271.Suche in Google Scholar
2. Helal, M. H.; El-Awdan, S.; Salem, M.; Abd-elaziz, T.; Moahamed, Y.; El-Sherif, A.; Mohamed, G. Synthesis, Biological Evaluation and Molecular Modeling of Novel Series of Pyridine Derivatives as Anticancer, Anti-inflammatory and Analgesic Agents. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 764–773; https://doi.org/10.1016/j.saa.2014.06.145.Suche in Google Scholar PubMed
3. Sharma, S.; Kumar, D.; Singh, G.; Monga, V.; Kumar, B. Recent Advancements in the Development of Heterocyclic Anti-inflammatory Agents. Eur. J. Med. Chem. 2020, 200; https://doi.org/10.1016/j.ejmech.2020.112438.Suche in Google Scholar PubMed
4. Yerragunta, V.; Suman, D.; Swamy, K.; Anusha, V.; Patil, P.; Naresh, M. Pyrazole and its Biological Activity, 2014. [Online]. Available: https://www.researchgate.net/publication/281611182.Suche in Google Scholar
5. Pillai, A. D.; Rathod, P. D.; Px, F.; Patel, M.; Nivsarkar, M.; Vasu, K. K.; Padh, H.; Sudarsanam, V. Novel Drug Designing Approach for Dual Inhibitors as Anti-inflammatory Agents: Implication of Pyridine Template. Biochem. Biophys. Res. Commun. 2003, 301 (1), 183–186; https://doi.org/10.1016/S0006-291X(02)02996-0.Suche in Google Scholar
6. Amr, A. G. E.; Abdulla, M. M. Anti-inflammatory Profile of Some Synthesized Heterocyclic Pyridone and Pyridine Derivatives Fused with Steroidal Structure. Bioorg. Med. Chem. 2006, 14 (13), 4341–4352; https://doi.org/10.1016/j.bmc.2006.02.045.Suche in Google Scholar PubMed
7. Kamat, V.; Santosh, R.; Poojary, B.; Nayak, S. P.; Kumar, B. K.; Sankaranarayanan, M.; Faheem; Khanapure, S.; Barretto, D. A.; Vootla, S. K. Pyridine- and Thiazole-Based Hydrazides with Promising Anti-inflammatory and Antimicrobial Activities along with Their In Silico Studies. ACS Omega 2020, 5 (39), 25228–25239; https://doi.org/10.1021/acsomega.0c03386.Suche in Google Scholar PubMed PubMed Central
8. Thomas, R.; Mary, Y. S.; Resmi, K.; Narayana, B.; Sarojini, B.; Vijayakumar, G.; Van Alsenoy, C. Two Neoteric Pyrazole Compounds as Potential Anti-cancer Agents: Synthesis, Electronic Structure, Physico-Chemical Properties and Docking Analysis. J. Mol. Struct. 2019, 1181, 455–466; https://doi.org/10.1016/j.molstruc.2019.01.003.Suche in Google Scholar
9. Chauhan, A.; Kaushik, N.; Sharma, P. K. Pyrazole: A Versatile Moiety, 2011. [Online]. Available: https://www.researchgate.net/publication/280016322.Suche in Google Scholar
10. Surendra Kumar, R.; Arif, I. A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and Antimicrobial Activities of Novel Pyrazole Analogues. Saudi J. Biol. Sci. 2016, 23 (5), 614–620; https://doi.org/10.1016/j.sjbs.2015.07.005.Suche in Google Scholar PubMed PubMed Central
11. Xia, T.; Hu, Z.; Ji, W.; Zhang, S.; Shi, H.; Liu, C.; Pang, B.; Liu, G.; Liao, X. Synthesis of Withasomnine and Pyrazole Derivatives: Via Intramolecular Dehydrogenative Cyclization, as Well as Biological Evaluation of Withasomnine-Based Scaffolds. Org. Chem. Front. 2018, 5 (5), 850–854; https://doi.org/10.1039/c7qo00847c.Suche in Google Scholar
12. Jayashree, A. Synthesis and Characterization of Heterocyclic Compounds through Multicomponent Reactions and Their Biological Applications; Mangalore University: Karnataka, 2020.Suche in Google Scholar
13. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Foresman, J. B.; Ortiz, J. V, Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, 2013.Suche in Google Scholar
14. R., K. T. and M. J. (2009) G. V. V. 5. S. Inc., S. M. Dennington, Dennington, R.; Keith, T.; Millam, J. Gauss View, Version 5; Semichem Inc.: Shawnee Mission, 2009.Suche in Google Scholar
15. Jamróz, M. H. Vibrational Energy Distribution Analysis (VEDA): Scopes and Limitations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 220–230; https://doi.org/10.1016/j.saa.2013.05.096.Suche in Google Scholar PubMed
16. Altürk, S.; Avcı, D.; Tamer, Ö.; Atalay, Y. 1H–pyrazole–3–carboxylic Acid: Experimental and Computational Study. J. Mol. Struct. 2018, 1164, 28–36; https://doi.org/10.1016/j.molstruc.2018.03.032.Suche in Google Scholar
17. Viji, A.; Balachandran, V.; Babiyana, S.; Narayana, B.; Salian, V. V. FT-IR and FT-Raman Investigation, Quantum Chemical Studies, Molecular Docking Study and Antimicrobial Activity Studies on Novel Bioactive Drug of 1-(2,4-Dichlorobenzyl)-3-[2-(3-(4-Chlorophenyl)-5-(4-(propan-2-Yl)phenyl-4,5-Dihydro-1h-Pyrazol-1-Yl]-4-Oxo-4,5-Dihydro-1,3-Thiazol-5(4h)-Ylidence]-2,3-Dihydro-1h-Indol-2-One. J. Mol. Struct. 2020, 1215, 128244. https://doi.org/10.1016/j.molstruc.2020.128244.Suche in Google Scholar
18. Ayar, A.; Aksahin, M.; Mesci, S.; Yazgan, B.; Gül, M.; Yıldırım, T. Antioxidant, Cytotoxic Activity and Pharmacokinetic Studies by Swiss Adme, Molinspiration, Osiris and DFT of PhTAD-Substituted Dihydropyrrole Derivatives. Curr. Comput. Aided Drug Des. 2021, 18 (1), 52–63; https://doi.org/10.2174/1573409917666210223105722.Suche in Google Scholar PubMed
19. Abdelrheem, D. A.; Abd El-Mageed, H. R.; Mohamed, H. S.; Rahman, A. A.; Elsayed, K. N. M.; Ahmed, S. A. Bis-indole Alkaloid Caulerpin from a New Source Sargassum Platycarpum: Isolation, Characterization, In Vitro Anticancer Activity, Binding with Nucleobases by DFT Calculations and MD Simulation. J. Biomol. Struct. Dyn. 2021, 39 (14), 5137–5147; https://doi.org/10.1080/07391102.2020.1784285.Suche in Google Scholar PubMed
20. Jayavel, P.; Ramasamy, V.; Amaladoss, N.; Renganathan, V.; Shupeniuk, V. I. A Facile Synthesis, Characterization, DFT, ADMET and In-Silico Molecular Docking Analysis of Novel 4-ethyl Acridine-1,3,9 (2,4,10H)-Trione. Chem. Phys. Impact 2024, 8; https://doi.org/10.1016/j.chphi.2024.100476.Suche in Google Scholar
21. Khare, N.; Maheshwari, S. K.; Jha, A. K. Screening and Identification of Secondary Metabolites in the Bark of Bauhinia Variegata to Treat Alzheimer’s Disease by Using Molecular Docking and Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2021, 39 (16), 5988–5998; https://doi.org/10.1080/07391102.2020.1796798.Suche in Google Scholar PubMed
22. Deghady, A. M.; Hussein, R. K.; Alhamzani, A. G.; Mera, A. Article Density Functional Theory and Molecular Docking Investigations of the Chemical and Antibacterial Activities for 1-(4-Hydroxyphenyl)-3-Phenylprop-2-En-1-One. Molecules 2021, 26 (12); https://doi.org/10.3390/molecules26123631.Suche in Google Scholar PubMed PubMed Central
23. Vijayakumar, R.; Viji, A.; Vanasundari, K.; Balachandran, V.; ArockiaDass, A. P. Molecular Docking and DFT Calculations of Anthracene: Insights from Quantum Chemical Methods. Cryst. Res. Technol. 2023, 59, 2300150. https://doi.org/10.1002/crat.202300150.Suche in Google Scholar
24. Shanmugapriya, N.; Balachandran, V.; Revathi, B.; Narayana, B.; Salian, V. V.; Vanasundari, K.; Sivakumar, C. Quantum Chemical Calculation, Performance of Selective Antimicrobial Activity Using Molecular Docking Analysis, RDG and Experimental (FT-IR, FT-Raman) Investigation of 4-[{2-[3-(4-Chlorophenyl)-5-(4-Propan-2-Yl) Phenyl)-4, 5-dihydro- 1H- Pyrazol-1-Yl]-4-Oxo-1, 3- Thiazol-5(4h)-Ylidene} Methyl] Benzonitrile. Heliyon 2021, 7 (7); https://doi.org/10.1016/j.heliyon.2021.e07634.Suche in Google Scholar PubMed PubMed Central
25. Viji, A.; Revathi, B.; Balachandran, V.; Babiyana, S.; Narayana, B.; Salian, V. V. Analysis of Spectroscopic, Quantum Chemical Calculations, Molecular Docking, RDG, ELF, Anticancer and Antimicrobial Activity Studies on Bioactive Molecule 2-[3-(4-Chlorophenyl)-5-(4-(propane-2-Yl) Phenyl-4,5-Dihydro-1h-Pyrazol-1-Yl]-4-(4-Methoxyphenyl)-1,3-Thiazol. Chem. Data Collect. 2020, 30; https://doi.org/10.1016/j.cdc.2020.100585.Suche in Google Scholar
26. Sivakumar, C.; Balachandran, V.; Narayana, B.; Salian, V. V.; Revathi, B.; Shanmugapriya, N.; Vanasundari, K. Molecular Spectroscopic Assembly of 3-(4-Chlorophenyl)-5-[4-(propane-2-Yl) Phenyl] 4, 5-dihydro-1H Pyrazole-1-Carbothioamide, Antimicrobial Potential and Molecular Docking Analysis. J. Mol. Struct. 2020, 1210; https://doi.org/10.1016/j.molstruc.2020.128005.Suche in Google Scholar
27. Sivakumar, C.; Revathi, B.; Balachandran, V.; Narayana, B.; Salian, V. V.; Shanmugapriya, N.; Vanasundari, K. Molecular Structure, Spectroscopic, Quantum Chemical, Topological, Molecular Docking and Antimicrobial Activity of 3-(4-Chlorophenyl)-5-[4-Propan-2-Yl) Phenyl-4, 5-Dihydro-1h-Pyrazol-1-Yl] (Pyridin-4-yl) Methanone. J. Mol. Struct. 2021, 1224; https://doi.org/10.1016/j.molstruc.2020.129286.Suche in Google Scholar
28. Zhao, N.; Akwataghibe, K.; Pompilius, A.; Shelly, E. 3,5-Di- Tert -butyl-1 H -Pyrazole-4-Carbonitrile. IUCrdata 2016, 1 (4); https://doi.org/10.1107/s2414314616006738.Suche in Google Scholar
29. Tan, M. Y.; Crouse, K. A.; Ravoof, T. B. S. A.; Jotani, M. M.; Tiekink, E. R. T. 3-{(E)-[4-(4-Hydroxy-3-methoxyphenyl)butan-2-ylidene]amino}-1-phenylurea: Crystal Structure and Hirshfeld Surface Analysis. Acta Crystallogr. E Crystallogr. Commun. 2018, 74, 21–27; https://doi.org/10.1107/S2056989017017273.Suche in Google Scholar PubMed PubMed Central
30. Zhao, P. H.; Jiang, S. L. 2-Isonicotinoyl-N-phenylhydrazinecarbothioamide Dimethylformamide Hemisolvate. Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67 (5); https://doi.org/10.1107/S1600536811011950.Suche in Google Scholar PubMed PubMed Central
31. Rahuman, M. H.; Muthu, S.; Raajaraman, B. R.; Raja, M.; Umamahesvari, H. Investigations on 2-(4-Cyanophenylamino) Acetic Acid by FT-Ir,ft-Raman, NMR and UV-Vis Spectroscopy, DFT (NBO, HOMO-LUMO, MEP and Fukui Function) and Molecular Docking Studies. Heliyon 2020, 6 (9); https://doi.org/10.1016/j.heliyon.2020.e04976.Suche in Google Scholar PubMed PubMed Central
32. Rizwana, F.; Prasana, J. C.; Muthu, S. Spectroscopic Investigation (FT-IR, FT-Raman, UV, NMR), Computational Analysis (DFT Method) and Molecular Docking Studies on 2-[(acetyloxy) Methyl]-4-(2-Amino-9h-Purin-9-Yl)butyl Acetate. [Online]. Available: http://www.ripublication.com.Suche in Google Scholar
33. Janani, S.; Rajagopal, H.; Muthu, S.; Aayisha, S.; Raja, M. Molecular Structure, Spectroscopic (FT-IR, FT-Raman, NMR), HOMO-LUMO, Chemical Reactivity, AIM, ELF, LOL and Molecular Docking Studies on 1-Benzyl-4-(n-Boc-Amino)piperidine. J. Mol. Struct. 2021, 1230; https://doi.org/10.1016/j.molstruc.2020.129657.Suche in Google Scholar
34. Babiyana, S.; Balachandran, V.; Thirughanasambantham, N.; Viji, A.; Narayana, B.; Salian, V. V.; Alharbi, N. S.; Khaled, J. M. Spectroscopic Characterizations, RDG and Docking Study of 2-[3-(4-Chlorophenyl)-5-(4-(propane-2-Yl) Phenyl)-4,5-Dihydro-1h Pyrozol-1-Yl]-4-(4-Fluorophenyl)-1,3-Thiazole. Z. Phys. Chem. 2024, 238 (10), 1887–1914; https://doi.org/10.1515/zpch-2024-0598.Suche in Google Scholar
35. Szafran, M.; Komasa, A.; Bartoszak-Adamska, E. Crystal and Molecular Structure of 4-carboxypiperidinium Chloride (4-piperidinecarboxylic Acid Hydrochloride). J. Mol. Struct. 2007, 827 (1–3), 101–107; https://doi.org/10.1016/j.molstruc.2006.05.012.Suche in Google Scholar
36. Singaravel, S.; Periyasamy, V.; Kim, I.; Hasan, I.; Paramasivam, S. Single crystal of barium bis para -nitrophenolate para -nitrophenol tetrahydrate for NLO applications: crystal growth and DFT analysis. Z. Phys. Chem. 2024, 238, 2101–2119; https://doi.org/10.1515/zpch-2023-0503.Suche in Google Scholar
37. Weinhold, F.; Landis, C. R. Natural Bond Orbitals and Extensions of Localized Bonding Concepts. Chem. Educ. Res. Pract., 2001, 2, 91–104.10.1039/B1RP90011KSuche in Google Scholar
38. Kuruvilla, T. K.; Prasana, J. C.; Muthu, S.; George, J. Vibrational Spectroscopic (FT-IR, FT-Raman) and Quantum Mechanical Study of 4-(2-Chlorophenyl)-2-Ethyl-9-Methyl-6h-Thieno[3,2-F] [1,2,4]triazolo[4,3-A] [1,4] Diazepine. J. Mol. Struct. 2018, 1157, 519–529; https://doi.org/10.1016/j.molstruc.2018.01.001.Suche in Google Scholar
39. Sathish, M.; Rajasekaran, L.; Shanthi, D.; Kanagathara, N.; Sarala, S.; Muthu, S. Spectroscopic (FT-IR, FT-Raman, UV-Vis) Molecular Structure, Electronic, Molecular Docking, and Thermodynamic Investigations of Indole-3-Carboxylic Acid by DFT Method. J. Mol. Struct. 2021, 1234; https://doi.org/10.1016/j.molstruc.2021.130182.Suche in Google Scholar
40. Amul, B.; Muthu, S.; Raja, M.; Sevvanthi, S. Spectral, DFT and Molecular Docking Investigations on Etodolac. J. Mol. Struct. 2019, 1195, 747–761; https://doi.org/10.1016/j.molstruc.2019.06.047.Suche in Google Scholar
41. Ramazani, A.; Sheikhi, M.; Hanifehpour, Y.; Asiabi, P. A.; Joo, S. W. Molecular Structure, Electronic Properties, Homo–Lumo, MEP and NBO Analysis of (N-Isocyanimino) Triphenylphosphorane (Ph3PNNC): DFT Calculations. J. Struct. Chem. 2018, 59 (3), 529–540; https://doi.org/10.1134/S0022476618030058.Suche in Google Scholar
42. Beatrice, M. L.; Delphine, S. M.; Amalanathan, M.; Mary, M. S. M.; Robert, H. M.; Mol, K. T. Molecular Structure, Spectroscopic, Fukui Function, RDG, Anti-microbial and Molecular Docking Analysis of Higher Concentration Star Anise Content Compound Methyl 4-Methoxybenzoate-DFT Study. J. Mol. Struct. 2021, 1238; https://doi.org/10.1016/j.molstruc.2021.130381.Suche in Google Scholar
43. Srivastava, A. K.; Pandey, A. K.; Jain, S.; Misra, N. FT-IR Spectroscopy, Intra-molecular C-H⋯O Interactions, HOMO, LUMO, MESP Analysis and Biological Activity of Two Natural Products, Triclisine and Rufescine: DFT and QTAIM Approaches. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136 (PB), 682–689; https://doi.org/10.1016/j.saa.2014.09.082.Suche in Google Scholar PubMed
44. Poater, J.; Duran, M.; Solà, M.; Silvi, B. Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chem. Rev. 2005, 105 (10), 3911–3947; https://doi.org/10.1021/cr030085x.Suche in Google Scholar PubMed
45. O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Cclib: A Library for Package-independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29 (5), 839–845; https://doi.org/10.1002/jcc.20823.Suche in Google Scholar PubMed
46. Alhawarri, M. B.; Al-Thiabat, M. G.; Dubey, A.; Tufail, A.; Fouad, D.; Alrimawi, B. H.; Dayoob, M. ADME Profiling, Molecular Docking, DFT, and MEP Analysis Reveal Cissamaline, Cissamanine, and Cissamdine from Cissampelos Capensis L.F. As Potential Anti-alzheimer’s Agents. RSC Adv. 2024, 14 (14), 9878–9891; https://doi.org/10.1039/d4ra01070a.Suche in Google Scholar PubMed PubMed Central
47. Uzun, S.; Esen, Z.; Koç, E.; Usta, N. C.; Ceylan, M. Experimental and Density Functional Theory (MEP, FMO, NLO, Fukui Functions) and Antibacterial Activity Studies on 2-amino-4- (4-nitrophenyl) -5,6-dihydrobenzo [h] Quinoline-3-Carbonitrile. J. Mol. Struct. 2019, 1178, 450–457; https://doi.org/10.1016/j.molstruc.2018.10.001.Suche in Google Scholar
48. Sharma, K.; Melavanki, R.; Patil, S. S.; Kusanur, R.; Patil, N. R.; Shelar, V. M. Spectroscopic Behavior, FMO, NLO and NBO Analysis of Two Novel Aryl Boronic Acid Derivatives: Experimental and Theoretical Insights. J. Mol. Struct. 2019, 1181, 474–487; https://doi.org/10.1016/j.molstruc.2018.12.086.Suche in Google Scholar
49. Daoui, S.; Faizi, M. S. H.; Kalai, F. E.; Saddik, R.; Dege, N.; Karrouchi, K.; Benchat, N. Crystal Structure and the DFT and MEP Study of 4-Benzyl-2-[2-(4-Fluorophenyl)-2-Oxoethyl]-6-Phenylpyridazin-3(2h)-One. Acta Crystallogr. E Crystallogr. Commun. 2019, 75, 1030–1034; https://doi.org/10.1107/S2056989019008557.Suche in Google Scholar PubMed PubMed Central
50. Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132 (18), 6498–6506; https://doi.org/10.1021/ja100936w.Suche in Google Scholar PubMed PubMed Central
51. Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph., 1996, 14, 33–38.10.1016/0263-7855(96)00018-5Suche in Google Scholar PubMed
52. Chandramohan, U. M.; Katta, P.; Prabakaran, A.; Prasath, M. QM, Molecular Docking and Molecular Dynamics Investigation on Acidic Phospholipase A2 2 Protein and Acidic Phospholipase A2 3 Protein with Silane Dimethyl. Chem. Phys. Impact 2024, 8; https://doi.org/10.1016/j.chphi.2024.100615.Suche in Google Scholar
53. Babiyana, S.; Balachandran, V.; Thirughanasambantham, N.; Viji, A.; Narayana, B.; Salian, V. V.; Alharbi, N. S.; Khaled, J. M. Spectroscopic Characterizations, RDG and Docking Study of 2-[3-(4-Chlorophenyl)-5-(4-(propane-2-Yl) Phenyl)-4,5-Dihydro-1h Pyrozol-1-Yl]-4-(4-Fluorophenyl)-1,3-Thiazole. Z. Phys. Chem. 2024, 238 (10), 1887–1914; https://doi.org/10.1515/zpch-2024-0598.Suche in Google Scholar
54. Viji, A.; Balachandran, V.; Babiyana, S.; Narayana, B.; Saliyan, V. V. Molecular Docking and Quantum Chemical Calculations of 4-Methoxy-{2-[3-(4-Chlorophenyl)-5-(4-(propane-2-yl) PHENYL)-4, 5-Dihydro-1H-Pyrazol-1-yl]- 1, 3-Thiazol-4-yl}phenol. J Mol Struct. 2020, 1203, 127452.10.1016/j.molstruc.2019.127452Suche in Google Scholar
55. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1 (1), 55–68; https://doi.org/10.1021/cc9800071.Suche in Google Scholar PubMed
56. Çapan, İ.; Servi, S.; Yıldırım, İ.; Sert, Y. Synthesis, DFT Study, Molecular Docking and Drug-Likeness Analysis of the New Hydrazine-1-Carbothioamide, Triazole and Thiadiazole Derivatives: Potential Inhibitors of HSP90. ChemistrySelect 2021, 6 (23), 5838–5846; https://doi.org/10.1002/slct.202101086.Suche in Google Scholar
57. Alnajjar, R.; Mohamed, N.; Kawafi, N. Bicyclo[1.1.1]Pentane as Phenyl Substituent in Atorvastatin Drug to Improve Physicochemical Properties: Drug-Likeness, DFT, Pharmacokinetics, Docking, and Molecular Dynamic Simulation. J. Mol. Struct. 2021, 1230; https://doi.org/10.1016/j.molstruc.2020.129628.Suche in Google Scholar
58. Manjusha, P.; Prasana, J. C.; Muthu, S.; Rizwana, B. F. Spectroscopic Elucidation (FT-IR, FT-Raman and UV-Visible) with NBO, NLO, ELF, LOL, Drug Likeness and Molecular Docking Analysis on 1-(2-Ethylsulfonylethyl)-2-Methyl-5-Nitro-Imidazole: An Antiprotozoal Agent. Comput. Biol. Chem. 2020, 88; https://doi.org/10.1016/j.compbiolchem.2020.107330.Suche in Google Scholar
59. Wang, M.; Yu, F.; Ding, H.; Wang, Y.; Li, P.; Wang, K. Emerging Function and Clinical Values of Exosomal MicroRNAs in Cancer. Mole. Ther. Nucl. Acids 2019, 16, 791–804; https://doi.org/10.1016/j.omtn.2019.04.027.Suche in Google Scholar
60. Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, NA; https://doi.org/10.1002/jcc.21334.Suche in Google Scholar
61. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem., 19 (14), 1639–1662.10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BSuche in Google Scholar
62. Gholivand, K.; Mohammadpanah, F.; Pooyan, M.; Roohzadeh, R. Evaluating Anti-coronavirus Activity of Some Phosphoramides and Their Influencing Inhibitory Factors Using Molecular Docking, DFT, QSAR, and NCI-RDG Studies. J. Mol. Struct. 2022, 1248; https://doi.org/10.1016/j.molstruc.2021.131481.Suche in Google Scholar
63. El-Deen, I. M.; Shoair, A. F.; El-Bindary, M. A. Synthesis, Structural Characterization, Molecular Docking and DNA Binding Studies of Copper Complexes. J. Mol. Liq. 2018, 249, 533–545; https://doi.org/10.1016/j.molliq.2017.11.072.Suche in Google Scholar
64. Xie, N. Z.; Du, Q. S.; Li, J. X.; Huang, R. B. Exploring Strong Interactions in Proteins with Quantum Chemistry and Examples of Their Applications in Drug Design. PLoS One 2015, 10 (9); https://doi.org/10.1371/journal.pone.0137113.Suche in Google Scholar
65. Viji, A.; Vijayakumar, R.; Balachandran, V.; Vanasundari, K.; Janaki, M. Molecular Docking and Computational Studies Investigation on a Bioactive Anti-cancer Drug: Thiazole Derivatives. Indian J. Chem. Technol. 2022, 29, 616–634. https://doi.org/10.56042/ijct.v29i6.67406.Suche in Google Scholar
66. Spassov, D. S.; Atanasova, M.; Doytchinova, I. A Role of Salt Bridges in Mediating Drug Potency: A Lesson from the N-Myristoyltransferase Inhibitors. Front. Mol. Biosci. 2023, 9; https://doi.org/10.3389/fmolb.2022.1066029.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Probing structural, surface morphological, optical, low temperature magnetic studies and electrochemical studies on gadolinium tellurite (GdTeO3)
- Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells
- Structural, morphological and dielectric properties of Ni-doped ZnO nanoceramics prepared by Sol-gel method
- The impact of additives and dope composition on hollow fiber ultrafiltration membrane for pure water permeability
- Third-order nonlinear optical characteristics of natural dye anthocyanin extracted from Ixora coccinea
- Dimethylsulfoxide functionalized cadmium sulfide quantum dot for heavy metal ion detection
- Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
- Editorial
- Editorial epilog on the special issue “solar water splitting and artificial photosynthesis (SWAP)”
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synthesis and spectroscopic characterization with topology analysis, drug-likeness (ADMET), and molecular docking of novel antitumor molecule 5-Amino-3-(4-hydroxy-3-methoxyphenyl)-1-isonicotinoyl-2,3-dihydro-1H-pyrazole-4-carbonitrile
- Probing structural, surface morphological, optical, low temperature magnetic studies and electrochemical studies on gadolinium tellurite (GdTeO3)
- Nanostructured bismuth chloride based ((CH3NH3)3Bi2IxCl9-x) active layers for lead-free perovskite solar cells
- Structural, morphological and dielectric properties of Ni-doped ZnO nanoceramics prepared by Sol-gel method
- The impact of additives and dope composition on hollow fiber ultrafiltration membrane for pure water permeability
- Third-order nonlinear optical characteristics of natural dye anthocyanin extracted from Ixora coccinea
- Dimethylsulfoxide functionalized cadmium sulfide quantum dot for heavy metal ion detection
- Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
- Editorial
- Editorial epilog on the special issue “solar water splitting and artificial photosynthesis (SWAP)”