Startseite Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of functionalized mesoporous silica hybrid nanoparticles for controlled drug delivery under pH-stimuli

  • Anandhu Mohan , Madhappan Santhamoorthy , Ranganathan Suresh ORCID logo , Munusamy Ashwini , Natarajan Arumugam , Abdulrahman I. Almansour , Loganathan Guganathan , Tamiloli Devendhiran , Mei-Ching Lin , Seong-Cheol Kim , Keerthika Kumarasamy EMAIL logo und Thi Tuong Vy Phan EMAIL logo
Veröffentlicht/Copyright: 5. Mai 2025

Abstract

This work describes the synthesis of periodic mesoporous organosilica (PMO@Py NPs) nanocarriers that integrate the hydroxyl-pyridyl (HP) ligand and could be used as an efficient drug delivery system in the presence of varying pH stimuli. PMO@Py NPs were produced by adapting the sol-gel co-condensation process. X-ray diffraction (XRD), Fourier-transform infrared (FTIR), N2 adsorption-desorption analysis, particle size analysis, and zeta potential measurements were used to characterize the produced PMO@Py NPs. The developed silica nanocarriers’ surface morphology was observed by scanning electron microscopy (SEM) study. The content of integrated organic functional groups in the PMO@Py NPs was determined using elemental analysis and thermogravimetric (TG) analysis. To ascertain the loading and pH-responsive release efficiency of the PMO@Py NPs under various pH (pH 7.4, 6.2, and 4.5) circumstances, respectively, the hydrophilic anticancer agent 5-Fu was utilized as a model drug. Furthermore, in MDA-MB-231 cells, the biocompatibility of the PMO@Py NPs was assessed. Additionally, utilizing samples of red blood cells, produced PMO@Py NPs’ hemocompatibility was assessed and compared with that of the positive control, Triton-X. Overall, the results showed that the HP-PMO@Py NPs that have been generated are biocompatible, have a high drug loading capacity (about 85 %), and release the drugs that were loaded under different pH stimulation conditions.


Corresponding authors: Keerthika Kumarasamy, Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan, ROC, E-mail: ; and Thi Tuong Vy Phan, Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Vietnam; and Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang, 550000, Vietnam, E-mail:
Anandhu Mohan, Madhappan Santhamoorthy, and Ranganathan Suresh contributed equally to this work.

Acknowledgments

This project was carried out with the support of the “2024 System Semiconductor Technology Development Support Project” of Chungbuk Technopark. The project was funded by Researchers Supporting Project number (RSP2025R143), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Anandhu Mohan, Munusamy Ashwini, Madhappan Santhamoorthy, Ranganathan Suresh, Nataraj Arumugam, Loganathan Guganathan, Tamiloli Devendhiran: Conceptualization, Methodology, Characterization and data analysis, original draft writing. Mei-Ching Lin, Keerthika Kumarasamy, Mei-Ching Lin, Thi Tuong vy Phan: Data curation and rearrangement, Draft revising. Abdulrahman I. Almansour, Seong-Cheol Kim: Supervision, review, and editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: The authors declares that have not used any AI-based tools.

  5. Conflict of interest: The authors have no conflicts to declare.

  6. Research funding: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3052258). The project was funded by Researchers Supporting Project number (RSP2024R143), King Saud University, Riyadh, Saudi Arabia.

  7. Data availability: Data availability on request.

References

1. Yusef, A.; Almotairy, A. R. Z.; Henidi, H.; Alshehri, O. Y.; Aldughaim, S. Polymers 2023, 15 (7), 1596; https://doi.org/10.3390/polym15071596.Suche in Google Scholar PubMed PubMed Central

2. Baig, N.; Kammakakam, I.; Falath, W. Mater. Mater. Adv. 2021, 2, 1821–1871; https://doi.org/10.1039/d0ma00807a.Suche in Google Scholar

3. Cheng, X.; Xie, Q.; Sun, Y. Front Bioeng. Biotechnol. 2023, 11, 1177151; https://doi.org/10.3389/fbioe.2023.1177151.Suche in Google Scholar PubMed PubMed Central

4. Moorthy, M. S.; Cho, H. J.; Yu, E. J.; Jung, Y. S.; Ha, C. S. Chem. Commun. 2013, 49, 8758; https://doi.org/10.1039/c3cc42513d.Suche in Google Scholar PubMed

5. Moorthy, M. S.; Park, J. H.; Bae, J. H.; Kim, S. H.; Ha, C. S. J. Mater. Chem. B 2014, 2, 6487; https://doi.org/10.1039/c4tb00808a.Suche in Google Scholar PubMed

6. Parambadath, S.; Rana, V. K.; Moorthy, S.; Chu, S. W.; Park, S. K.; Lee, D.; Sung, G.; Ha, C. S. J. Solid State Chem. 2011, 184, 1208; https://doi.org/10.1016/j.jssc.2011.03.003.Suche in Google Scholar

7. Moorthy, M. S.; Park, S. S.; Selvaraj, M.; Ha, C. S. J. Nanosci. Nanotechnol. 2014, 14, 8891; https://doi.org/10.1166/jnn.2014.9957.Suche in Google Scholar PubMed

8. Croissant, G. J.; Fatieiev, Y.; Almalik, A.; Khashab, N. M. Adv. Healthc. Mater. 2018, 7, 1700831; https://doi.org/10.1002/adhm.201700831.Suche in Google Scholar PubMed

9. Tsai, M. J.; Chang, C. Y.; Wu, J. Y.. J. Solid State Chem. 2022, 307, 122863; https://doi.org/10.1016/j.jssc.2021.122863.Suche in Google Scholar

10. Li, H.; Yu, H.; Zhu, C.; Hu, J.; Du, M.; Zhang, F.; Yang, D. RSC Adv. 2016, 6, 94160; https://doi.org/10.1039/c6ra17213j.Suche in Google Scholar

11. Moorthy, M. S.; Park, S. S.; Fuping, D.; Hong, S. H.; Selvaraj, M.; Ha, C. S.. J. Mater. Chem. 2012, 22, 9100; https://doi.org/10.1039/c2jm16341a.Suche in Google Scholar

12. Ramkumar, V.; Raorane, C. J.; Christy, H. J.; Anandhi, S.; Santhamoorthy, M.; Kamachiyappan, P.; Ashokkumar, A.; Balamurugan, S.; Kim, S. C. J. Mol. Struct. 2023, 1292, 136109; https://doi.org/10.1016/j.molstruc.2023.136109.Suche in Google Scholar

13. Moorthy, M. S.; Kim, M. J.; Bae, J. H.; Park, S. S.; Saravanan, N.; Kim, S. H.; Ha, C. S. Eur. J. Inorg. Chem. 2013, 2013, 3028; https://doi.org/10.1002/ejic.201300118.Suche in Google Scholar

14. Jang, B.; Moorthy, M. S.; Manivasagan, P.; Xu, L.; Song, K.; Lee, K. D.; Kwak, M.; Oh, J.; Jin, J. O. Oncotarget 2018, 9, 12649; https://doi.org/10.18632/oncotarget.23898.Suche in Google Scholar PubMed PubMed Central

15. Thirupathi, K.; Santhamoorthy, M.; Radhakrishnan, S.; Ulagesan, S.; Nam, T. J.; Phan, T. T. V.; Kim, S. C. Pharmaceutics 2023, 15, 795; https://doi.org/10.3390/pharmaceutics15030795.Suche in Google Scholar PubMed PubMed Central

16. Moritz, M.; Laniecki, M. Appl. Surface Sci. 2012, 258, 7523.10.1016/j.apsusc.2012.04.076Suche in Google Scholar

17. Moorthy, M. S.; Bae, J. H.; Kim, M. J.; Kim, S. H.; Ha, C. S. Part. Part. Syst. Charact. 2013, 12, 1044.10.1002/ppsc.201300164Suche in Google Scholar

18. Bharathiraja, S.; Seo, H.; Manivasagan, P.; Moorthy, M. S.; Park, S.; Oh, J. Molecules 2016, 21, 1470; https://doi.org/10.3390/molecules21111470.Suche in Google Scholar PubMed PubMed Central

19. Phan, T. T. V.; Bharathiraja, S.; Moorthy, M. S.; Manivasagan, P.; Lee, K. D.; Oh, J. RSC Adv. 2017, 7, 35027; https://doi.org/10.1039/c7ra02140b.Suche in Google Scholar

20. Song, Y.; Li, Y.; Xu, Q.; Liu, Z. Int. J. Nanomed. 2016, 12, 87; https://doi.org/10.2147/ijn.s117495.Suche in Google Scholar PubMed PubMed Central

21. Thenmozhi, R.; Moorthy, M. S.; Sivaguru, J.; Manivasagan, P.; Bharathiraja, S.; Oh, Y.; Oh, J. J. Nanosci. Nanotechnol. 2019, 19, 1951; https://doi.org/10.1166/jnn.2019.15399.Suche in Google Scholar PubMed

22. Bui, N. Q.; Cho, S. W.; Moorthy, M. S.; Park, S. M.; Piao, Z.; Nam, S. Y.; Kang, H. W.; Kim, C. S.; Oh, J. Sci. Rep. 2018, 8, 2000; https://doi.org/10.1038/s41598-018-20139-0.Suche in Google Scholar PubMed PubMed Central

23. Mishra, A.; Sharma, S.; Gupta, B. J. Appl. Polym. Sci. 2011, 121, 2705; https://doi.org/10.1002/app.33884.Suche in Google Scholar

24. Zhenbang, H.; Yongchun, D.; Siming, D. Mater. Design. 2010, 31, 2784.Suche in Google Scholar

25. Bharathiraja, S.; Manivasagan, P.; Oh, Y. O.; Moorthy, M. S.; Seo, H.; Bui, N. Q.; Oh, J. Int. J. Pharm. 2017, 517, 216; https://doi.org/10.1016/j.ijpharm.2016.12.020.Suche in Google Scholar PubMed

26. Moorthy, M. S.; Kim, H. B.; Bae, J. H.; Kim, S. H.; Ha, C. S. RSC Adv. 2016, 6, 29106; https://doi.org/10.1039/c5ra28143a.Suche in Google Scholar

27. Oh, Y.; Moorthy, M. S.; Manivasagan, P.; Bharathiraja, S.; Oh, J. Biochimie 2017, 133, 7; https://doi.org/10.1016/j.biochi.2016.11.012.Suche in Google Scholar PubMed

28. Manivasagan, P.; Bui, N. Q.; Bharathiraja, S.; Moorthy, M. S.; Oh, Y. O.; Song, K.; Seo, H.; Yoon, M.; Oh, J. Sci. Rep. 2017, 7, 43593.10.1038/srep43593Suche in Google Scholar PubMed PubMed Central

29. Moorthy, M. S.; Kim, H. B.; Sung, A. R.; Bae, J. H.; Kim, S. H.; Ha, C. S. Micropor. Mesopor. Mater. 2014, 194, 219; https://doi.org/10.1016/j.micromeso.2014.03.043.Suche in Google Scholar

30. Santhamoorthy, M.; Thirupathi, K.; Periyasamy, T.; Thirumalai, D.; Ramkumar, V.; Kim, S. C. New J. Chem. 2021, 45, 20641; https://doi.org/10.1039/d1nj03520g.Suche in Google Scholar

31. Santhamoorthy, M.; Kunasekaran, U.; Thirupathi, K.; Thirumalai, D.; Kim, S. C. Mater. Lett. 2022, 313, 131786; https://doi.org/10.1016/j.matlet.2022.131786.Suche in Google Scholar

32. Madhappan, S.; Kim, S. H.; Huh, P.; Jung, Y. S.; Kim, S. C. Env. Res. 2023, 231, 116171.10.1016/j.envres.2023.116172Suche in Google Scholar PubMed

33. Santhamoorthy, M.; Thirupathi, K.; Kumar, S. S. D.; Pandiaraj, S.; Rahaman, M.; Phan, T. T. V.; Kim, S. C. Int. J. Biomacromol. 2023, 244, 125467; https://doi.org/10.1016/j.ijbiomac.2023.125467.Suche in Google Scholar PubMed

34. Santhamoorthy, M.; Thirupathi, K.; Krishnan, S.; Guganathan, L.; Dave, S.; Phan, T. T. V.; Kim, S. C. Magnetochem 2023, 9, 81; https://doi.org/10.3390/magnetochemistry9030081.Suche in Google Scholar

35. Moorthy, M. S.; Oh, Y.; Bharathiraja, S.; Manivasagan, P.; Rajarathinam, T.; Jang, B.; Phan, T. T. V.; Jang, H.; Oh, J. RSC Adv. 2016, 6, 110444; https://doi.org/10.1039/c6ra23470d.Suche in Google Scholar

36. Thirupathi, K.; Raorane, C. J.; Ramkumar, V.; Ulagesan, S.; Moorthy, M. S.; Raj, V.; Krishnakumar, G. S.; Phan, T. T. V.; Kim, S. C. Gels 2023, 9, 35; https://doi.org/10.3390/gels9010035.Suche in Google Scholar PubMed PubMed Central

37. Sana, S. S.; Santhamoorthy, M.; Haldar, R.; Raorane, C. J.; Iravani, S.; Varma, R. S.; Kim, S. C. Process Biochem. 2023, 132, 200; https://doi.org/10.1016/j.procbio.2023.06.022.Suche in Google Scholar

38. Phan, T. T. V.; Santhamoorthy, M. Mater. Proceedings 2023, 14, 71.10.3390/IOCN2023-14468Suche in Google Scholar

39. Thirupathi, K.; Phan, T. T. V.; Santhamoorthy, M.; Ramkumar, V.; Kim, S. C. Polymers 2022, 15, 167; https://doi.org/10.3390/polym15010167.Suche in Google Scholar PubMed PubMed Central

40. Phan, T. T. V.; Bui, N. Q.; Moorthy, M. S.; Lee, K. D.; Oh, J. Nanoscale Res. Lett. 2017, 12, 1.10.1186/s11671-017-2337-9Suche in Google Scholar PubMed PubMed Central

41. Moorthy, M. S.; Bharathiraja, S.; Manivasagan, P.; Oh, Y.; Jang, B.; Phan, T. T. V.; Oh, J. J. Porous Mater. 2018, 25, 119; https://doi.org/10.1007/s10934-017-0425-y.Suche in Google Scholar

42. Moorthy, M. S.; Bharathiraja, S.; Manivasagan, P.; Lee, K. D.; Oh, J. MedChemComm. 2017, 8, 1797; https://doi.org/10.1039/c7md00270j.Suche in Google Scholar PubMed PubMed Central

43. Park, S. S.; Moorthy, M. S.; Ha, C. S. NPG Asia Mater. 2014, 6, e96.10.1038/am.2014.13Suche in Google Scholar

44. Tapaswi, P. K.; Moorthy, M. S.; Park, S. S.; Ha, C. S. J. Solid State Chem. 2014, 211, 191; https://doi.org/10.1016/j.jssc.2013.12.028.Suche in Google Scholar

45. Santhamoorthy, M.; Vanaraj, R.; Thirupathi, K.; Ulagesan, S.; Nam, T. J.; Phan, T. T. V.; Kim, S. C. Gels 2023, 9, 363; https://doi.org/10.3390/gels9050363.Suche in Google Scholar PubMed PubMed Central

46. Santhamoorthy, M.; Phan, T. T. V.; Ramkumar, V.; Raorane, C. J.; Thirupathi, K.; Kim, S. C. Polymers 2022, 14, 4128.10.3390/polym14194128Suche in Google Scholar PubMed PubMed Central

47. Gisbert-Garzaran, M.; Lozano, D.; Matsumoto, K.; Komatsu, A.; Manzano, M.; Tamanoi, F.; Vallet-Regi, M. ACS Appl. Mater. Interfaces 2021, 13, 9656; https://doi.org/10.1021/acsami.0c21507.Suche in Google Scholar PubMed PubMed Central

Received: 2024-03-15
Accepted: 2025-04-11
Published Online: 2025-05-05
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0773/html
Button zum nach oben scrollen