Home Probing structural, surface morphological, optical, low temperature magnetic studies and electrochemical studies on gadolinium tellurite (GdTeO3)
Article
Licensed
Unlicensed Requires Authentication

Probing structural, surface morphological, optical, low temperature magnetic studies and electrochemical studies on gadolinium tellurite (GdTeO3)

  • Ariponnammal Shanmuga Sundaram EMAIL logo , Ramalakshmi Ramakrishnan and Shanmugha Soundare Sivakumar
Published/Copyright: December 6, 2024

Abstract

Gadolinium tellurite (GdTeO3) has been synthesized by hydrothermal process. It displays both tiny nanorods and spherical particles embedded in a structure resembling flakes. Using a particle size analyzer, the size of the particle is found to be 142.5 nm. GdTeO3 has a cubic structure. Urbach energy is 0.4566 eV, energy gap is 5.797 eV, and refractive index is 1.890. The sample is suitable as UV filter and an effective applicant of optoelectronics. The bands observed in UV spectrum are assigned with the transitions between energy levels of Gd and attributed to different surface defects. The bands seen in the spectrum are linked to Gd’s energy level transitions and have various surface imperfections. The sample contained tellurite in an oxide matrix containing gadolinium. Magnetic analysis indicates that GdTeO3 may be undergoing a phase transition and may contain a small impurity. At 300 K, the M−H curve demonstrates paramagnetic and weak ferromagnetic characteristics with aligned cooperative Gadolinium spins. Pseudocapacitive behavior is shown by the cyclic voltammogram and Cp analysis. The sample exhibits 0.90 V potential window. It has been observed that specific capacitance is 139.34 Fg−1 from cyclic voltammogram and 112.93 Fg−1 from Cp analysis. Analysis of impedance reveals a pseudo-capacitive character.


Corresponding author: Ariponnammal Shanmuga Sundaram, Department of Physics, Gandhigram Rural Institute, Deemed To Be University, Gandhigram 624302, Dindigul District, Tamilnadu, India, E-mail:

Acknowledgments

Authors are thankful to SAIF-IITM, Chennai, India for access to their low temperature facilities.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Majeed, H.; Ahmad, K.; Bibi, S.; Iftikhar, T.; Ibrahim, M. M.; Ruby, T.; Mersal, G. A. M.; El-Bahy, Z. M.; Qureshi, K.; Arif, M.; Naseem, K.; Shaheen, S.; Bhatti, H. N. Tamarindus indica Seed Polysaccharide-Copper Nanocomposite: An Innovative Solution for Green Environment and Antimicrobial Studies. Heliyon 2024, 10, e30927. https://doi.org/10.1016/j.heliyon.2024.e30927.Search in Google Scholar PubMed PubMed Central

2. Ahmad, K.; Shah, H.-R.; Ashfaq, M.; Shah, S. S. A.; Hussai, E.; Naseem, H. A.; Parveen, S.; Ayub, A. Effect of Metal Atom in Zeolitic Imidazolate Frameworks (ZIF-8 & 67) for Removal of Pb2+ & Hg2+ from Water. Food Chem. Toxicol. 2021, 149, 112008. https://doi.org/10.1016/j.fct.2021.112008.Search in Google Scholar PubMed

3. Khalil, A.; Altaf Nazir, M.; Qureshi, Ahmad, K.; Hussain, E.; Najam, T.; Javed, M. S.; Syed, S. A. S.; Tufail, M. K.; Hussain, S.; Khan, N. A.; Shah, H.-R.; Ashfaq, M. Engineering of Zirconium Based Metal-Organic Frameworks (Zr-MOFs) as Efficient Adsorbents. Mater. Sci. Eng B. 2020, 262, 114766. https://doi.org/10.1016/j.mseb.2020.114766.Search in Google Scholar

4. Zhou, D.; Jin, D.; Ni, Q.; Song, X.; Han, K. Preparation of Double‐Cladding Ho3+/Tm3+ Co‐doped Bi2O3-GeO2-Ga2O3-BaF2 Glass Fiber and its 2.0 μm Laser Performance. J. Am. Ceram. Soc. 2019, 102, 4748. https://doi.org/10.1111/jace.16361.Search in Google Scholar

5. Chu, Y.; Yang, Y.; Liu, Y.; Wang, S.; Shi, C.; Zhang, D.; Li, H.; Peng, J.; Dai, N.; Li, J.; Yang, L. 1.8 μm Fluorescence Characteristics of Tm3+ Doped Silica Glasses and Fiber Prepared by the Glass Phase-Separation Technology. J. Non-Cryst. Sol. 2020, 529, 119704. https://doi.org/10.1016/j.jnoncrysol.2019.119704.Search in Google Scholar

6. Kaur, A.; Khanna, A.; González-Barriuso, M.; González, F. Thermal and Light Emission Properties of Rare Earth (Eu3+, Dy3+ and Er3+), Alkali (Li+, Na+ and K+) and Al3+-Doped Barium Tellurite and Boro-Tellurite Glasses. J. Mater. Sci.: Mater. Electron. 2021, 32, 17266. https://doi.org/10.1007/s10854-021-06228-3.Search in Google Scholar

7. Marcondes, L. M.; Rodrigues, L.; Da Cunha, C. R.; Gonçalves, R. R.; De Camargo, A. S.; Cassanjes, F. C.; Poirier, G. Y. Rare-Earth Ion Doped Niobium Germanate Glasses and Glass-Ceramics for Optical Device Applications. J. Lumin. 2019, 213, 224. https://doi.org/10.1016/j.jlumin.2019.05.012.Search in Google Scholar

8. Annapoorani, K.; Murthy, N. S.; Ravindran, T. R.; Marimuthu, K. Influence of Er3+ Ion Concentration on Spectroscopic Properties and Luminescence Behavior in Er3+ Doped Strontium Telluroborate Glasses. J. Lumin. 2016, 171, 19. https://doi.org/10.1016/j.jlumin.2015.10.071.Search in Google Scholar

9. Okura, T.; Nojima, Y.; Kawada, K.; Kojima, Y.; Yamashita, K. Photoluminescence Properties of Rare-Earth Ion-Doped Na5YSi4O12-Based Glass Ceramics. Ceram. Int. 2021, 47, 1940. https://doi.org/10.1016/j.ceramint.2020.09.023.Search in Google Scholar

10. Walsh, B.; Barnes, N. Comparison of Tm: ZBLAN and Tm: Silica Fiber Lasers; Spectroscopy and Tunable Pulsed Laser Operation around 1.9 μm. Appl. Phys. B 2004, 78, 325. https://doi.org/10.1007/s00340-003-1393-2.Search in Google Scholar

11. Richards, B.; Jha, A.; Tsang, Y.; Binks, D.; Lousteau, J.; Fusari, F.; Lagatsky, A.; Brown, C.; Sibbett, W. Tellurite Glass Lasers Operating Close to 2 μm. Laser Phys. Lett. 2010, 7, 177. https://doi.org/10.1002/lapl.200910131.Search in Google Scholar

12. Song, X.; Han, K.; Zhou, D.; Xu, P.; Xue, X.; Zhang, P. ∼2 μm Emission Properties and Energy Transfer Processes in Tm3+ Doped Bi2O3-GeO2-Na2O Glass Laser Material. J. Lumin. 2020, 224, 117314. https://doi.org/10.1016/j.jlumin.2020.117314.Search in Google Scholar

13. Basavapoornima, C. H.; Maheswari, T.; Deviprasad, C. J.; Kesavulu, C. R.; Tröster, T. H.; Jayasankar, C. K. Thermal, Structural, Mechanical and 1.8 μm Luminescence Properties of the Thulium Doped Pb-K-Al-Na Glasses for Optical Fiber Amplifiers. J. Non-Cryst. Solids 2020, 530, 119773. https://doi.org/10.1016/j.jnoncrysol.2019.119773.Search in Google Scholar

14. So, B.; She, J.; Ding, Y.; Miyake, J.; Atsumi, T.; Tanaka, K. .P.; Wondraczek, L. Magnetic Properties and Photoluminescence of Thulium-Doped Calcium Aluminosilicate Glasses. Opt. Mater. Express 2019, 9, 4348. https://doi.org/10.1364/OME.9.004348.Search in Google Scholar

15. Wen, X.; Tang, G.; Yang, Q.; Chen, X.; Qian, Q.; Zhang, Q.; Yang, Z. Highly Tm3+ Doped Germanate Glass and its Single Mode Fiber for 2.0 μm Laser. Sci. Rep. 2016, 6, 20344. https://doi.org/10.1038/srep20344.Search in Google Scholar PubMed PubMed Central

16. Liu, L.; Chen, F.; Cui, J.; Xiao, X.; Xu, Y.; Hou, C.; Cui, X.; Guo, H. The Mutual Influence between Rare Earth Element Doping and Femtosecond Laser-Induced Effects in Ga-As-Sb-S Chalcogenide Glass. Ceram. Int. 2021, 47, 6388. https://doi.org/10.1016/j.ceramint.2020.10.219.Search in Google Scholar

17. Qi, F.; Huang, F.; Lei, R.; Tian, Y.; Zhang, L.; Zhang, J.; Xu, S. Emission Properties of 1.8 and 2.3 μm in Tm3+-Doped Fluoride Glass. Glass Phys. Chem. 2017, 43, 340. https://doi.org/10.1134/S1087659617040058.Search in Google Scholar

18. https://www.vedantu.com/physics/phonon.Search in Google Scholar

19. Sivaprakash, P.; Ashok Kumar, K.; Muthukumaran, S.; Pandurangan, A.; Dixit, A.; Arumugam, S. NiF2 as an Efficient Electrode Material with High Window Potential of 1.8 V for High Energy and Power Density Asymmetric Supercapactor. J.Electroanal.Chem. 2020, 873, 114379. https://doi.org/10.1016/j.jelechem.2020.114379.Search in Google Scholar

20. Sivaprakash, P.; Ashok Kumar, K.; Subalakshmi, K.; Chinna Bathula, S. S.; Arumugam, S. Fabrication of High Performance Asymmetric Supercapacitors with High Energy and Power Density Based on Binary Metal Fluoride. Mater. Lett. 2020, 275, 128146. https://doi.org/10.1016/j.matlet.2020.128146.Search in Google Scholar

21. Kumar, S.; Kumar Kaliamurthy, A.; Kavu, K.; Paramasivam, S.; Appadurai, T.; Sonachalam, A.; Kim, I.; Lee, S. Effect of Fluoride (CoF2) Based Electrode Material for High Energy and Power Density Asymmetric Flexible Supercapacitors. J. Energy Storage 2024, 87, 111460. https://doi.org/10.1016/j.est.2024.111460.Search in Google Scholar

22. Murugan, A.; Siva, V.; Shameem, A. S.; Pannerselvam, M.; Kim, I.; Al-Sehemi, A. G.; Sivaprakash, P. Boosted Electrochemical Properties of Co3O4 Nanoflakes by the Addition of a Redox-Additive Electrolyte. Z. Phys. Chem. 2025, 239, 79–96. https://doi.org/10.1515/zpch-2024-0017.Search in Google Scholar

23. Rajamanickam, R.; Ganesan, B.; Kim, I.; Hasan, I.; Arumugam, P.; Paramasivam, S. Effective Synthesis of Nitrogen Doped Carbon Nanotubes over Transition Metal Loaded Mesoporous Catalysts for Energy Storage of Supercapacitor Applications. Z. Phys. Chem. 2024, 238, 1835–1861. https://doi.org/10.1515/zpch-2023-0458.Search in Google Scholar

24. Ye, K.; Li, K.; Lu, Y.; Guo, Z.; Ni, N.; Liu, H.; Huang, Y.; Ji, H.; Wang, P. An Overview of Advanced Methods for the Characterization of Oxygen Vacancies in Materials. Trensads Anal. Chem. 2019, 116, 102. https://doi.org/10.1016/j.trac.2019.05.002.Search in Google Scholar

25. Ariponnammal, S.; Shalini, S.; Anusha, S. Tailoring Room Temperature Ferromagnetism and Observation of Electrolyte of Widest Potential Window in Gd0.75Se Nano Particles. Cryst. Res. Technol. 2022, 57, 2200106. https://doi.org/10.1002/crat.202200106.zpch.Search in Google Scholar

26. Nazir, A.; Khalid, F.; Rehman, S.; Sarwar, M.; Iqbal, M.; Yaseen, M.; Khan, M. I.; Abbas, M. Structural, Electric and Dielectric Properties of Perovskite Based Nanoparticles for Energy Applications. Z. Phys. Chem. 2021, 235, 769. https://doi.org/10.1515/zpc-2019-1558.Search in Google Scholar

27. Suthanthirakumar, P.; Arunkumar, S.; Marimuthu, K. Investigations on the Spectroscopic Properties and Local Structure of Eu3+ Ions in Zinc Telluro-Fluoroborate Glasses for Red Laser Applications. J. Alloys Compd. 2018, 760, 42. https://doi.org/10.1016/j.jallcom.2018.05.153.Search in Google Scholar

28. https://www.americanelements.com/Tellurites.html.Search in Google Scholar

29. Cheng, Y.; Wu, H.; Yu, H.; Hu, Z.; Wang, J.; Wu, Y. Rational Design of a Promising Oxychalcogenide Infrared Nonlinear Optical Crystal. Chem. Sci. 2022, 13, 5305. https://doi.org/10.1039/D2SC00099G.Search in Google Scholar PubMed PubMed Central

30. https://oqmd.org/materials/entry/351241.Search in Google Scholar

31. Modwi, A.; Taha, K. K.; Khezami, L.; Boudina, M.; Khairy, M.; Al-Duaij, O. K.; Talab, S. Dependence of the Electrical Properties of Cu-Doped ZnO Nanoparticles Decorated by Ag Atoms. Z. Phys. Chem. 2021, 235, 745. https://doi.org/10.1515/zpch-2019-1473.Search in Google Scholar

32. Dehelean, A.; Rada, S.; Popa, A.; Culea, E. Structural and Magnetic Investigations on Gadolinium-Tellurite Vitreous Systems Prepared by Sol–Gel Method. J. Mol. Struct. 2013, 1036, 203. https://doi.org/10.1016/j.molstruc.2012.11.051.Search in Google Scholar

33. Rahman, A. A.; Vasilev, K.; Majewski, P. Ultra Small Gd2O3 Nanoparticles: Absorption and Emission Properties. J. Colloid Interface Sci. 2011, 354, 592. https://doi.org/10.1016/j.jcis.2010.11.012.Search in Google Scholar PubMed

34. Tahenti, M.; Issaoui, N.; Roisnel, T.; Kazachenko, A. S.; Iramain, M. A.; Silvia, A. B.; Omar, A.-D.; Kazachenko, A. S.; Marouan, H. Highlighting Non-covalent Interactions to Molecular Structure, Electronic and Vibrational Spectra in a New Hybrid Organic-Inorganic Cobalt Complex: Synthesis, Experimental and Computational Study. Z. Phys. Chem. 2023, 237, 1775; https://doi.org/10.1515/zpch-2023-0332.Search in Google Scholar

35. Slimani, Y.; Meena, S. S.; Shirsath, S. E.; Hannachi, E.; Almessiere, M. A.; Baykal, A.; Sivakumar, R.; Batoo, K. M.; Thakur, A.; Ercan, I.; Özçelik, B. Impact of Magnetic Spinel Ferrite Content on the Structure, Morphology, Optical, and Magneto-Dielectric Properties of BaTiO3 Materials. Z. Phys. Chem. 2023, 237, 1753. https://doi.org/10.1515/zpch-2023-0215.Search in Google Scholar

36. Halimah, M. K.; Faznny, M. F.; Azlan, M. N.; Sidek, H. A. A. Optical Basicity and Electronic Polarizability of Zinc Borotellurite Glass Doped La3+ Ions. Res. Phys. 2017, 7, 581. https://doi.org/10.1016/j.rinp.2017.01.014.Search in Google Scholar

37. Saudi, H.; Adel, G. Physical and Optical Properties of CeO2 BaO B2O3 Glasses. Optics 2018, 6, 17; https://doi.org/10.11648/j.optics.20170602.11.Search in Google Scholar

38. Shanmuga Sundaram, A.; Gregory, B. R. N.; Sivakumar, S. S. Exploring Optical and Electrochemical Studies on Thulium Selenite (TmSeO3). Z. Phys. Chem. 2024. 238, 2147–2164. https://doi.org/10.1515/zpch-2023-0404.Search in Google Scholar

39. Ariponnammal, S.; Basil Ralph, N. G.; Shanmugha Soundare, S.; Jayavel, R. Synthesis and Investigation of Electrochemical Studies on Thulium Tellurite (TmTeO3) for Supercapacitor Electrode Application. Nano 2024, 5, 2450021. https://doi.org/10.1142/S1793292024500218.Search in Google Scholar

40. Rudraswamy, B.; Dhananjaya, N. Photoluminescence Properties of Gadolinium Oxide Nanophosphor. IOP Conf. Ser.: Mater. Sci. Eng. 2012, 40, 012034; https://doi.org/10.1088/1757-899X/40/1/012034.Search in Google Scholar

41. Tamrakar, R. K.; Bisen, D. P.; Upadhyay, K.; Sahu, M.; Sahu, I. P.; Bramhe, N. Comparison of Emitted Color by Pure Gd2O3 Prepared by Two Different Methods by CIE Coordinates. Superlattices Microstruct. 2015, 88, 382. https://doi.org/10.1016/j.spmi.2015.09.033.Search in Google Scholar

42. Mazhdi, M.; Tafreshi, M. J. The Effects of Gadolinium Doping on the Structural, Morphological, Optical, and Photoluminescence Properties of Zinc Oxide Nanoparticles Prepared by Co-precipitation Method. Appl. Phys. A 2018, 124, 1. https://doi.org/10.1007/s00339-018-2291-0.Search in Google Scholar

43. Lv, F.; Zhang, Y.; Chen, X.; Ma, Y. Composition and Fluorescence of Gadolinium (III) Acetyl-Acetonate Derivatives by Solvothermal Method. Int. J. Opt. Photonics Eng. 2017, 2 (005), 1; https://doi.org/10.35840/2631-5092/4505.Search in Google Scholar

44. Mohan, J. Organic Spectroscopy; Narosa Publication House: New Delhi, 2000.Search in Google Scholar

45. Silverstein, R. M.; Bassler, G. C. Spectrometric Identification of Organic Compounds. J. Chem. Educ. 1962, 39, 546. https://doi.org/10.1021/ed039p546.Search in Google Scholar

46. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons: USA, 1986.Search in Google Scholar

47. Moulder, J. F.; Stickle, W. F.; Sobol, W. M.; Bomben, K. D. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: USA, 1992.Search in Google Scholar

48. Khan, S. A.; Gambhir, S.; Ahmad, A. Extracellular Biosynthesis of Gadolinium Oxide (Gd2O3) Nanoparticles, Their Biodistribution and Bioconjugation with the Chemically Modified Anticancer Drug Taxol. Beilstein J. Nanotechnol. 2014, 5, 249. https://doi.org/10.3762/bjnano.5.27.Search in Google Scholar PubMed PubMed Central

49. Aguilar, T.; Navas, J.; Alcántara, R.; Fernández-Lorenzo, C.; Blanco, G.; Sánchez-Coronilla, A.; Martín-Calleja, J. Surface Thulium-Doped TiO2 Nanoparticles Used as Photoelectrodes in Dye-Sensitized Solar Cells: Improving the Open-Circuit Voltage. Appl. Phys. A 2015, 121, 1261. https://doi.org/10.1007/s00339-015-9503-7.Search in Google Scholar

50. Singh, J.; Srivastava, M.; Roychoudhury, A.; Lee, D. W.; Lee, S. H.; Malhotra, B. D. Optical and Electro-catalytic Studies of Nanostructured Thulium Oxide for Vitamin C Detection. J. Alloys Compd. 2013, 578, 405. https://doi.org/10.1016/j.jallcom.2013.06.026.Search in Google Scholar

51. Chastain, J.; King Jr, R. C. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: USA, 1992.Search in Google Scholar

52. Reese, M. O.; Perkins, C. L.; Burst, J. M.; Farrell, S.; Barnes, T. M.; Johnston, S. W.; Kuciauskas, D.; Gessert, T. A.; Metzger, W. K. Intrinsic Surface Passivation of CdTe. J. Appl. Phys. 2015, 118, 155305. https://doi.org/10.1063/1.4933186.Search in Google Scholar

53. Bahl, M. K.; Watson, R. L.; Irgolic, K. J. X‐ray Photoemission Studies of Tellurium and Some of its Compounds. J. Chem. Phys. 1977, 66, 5526. https://doi.org/10.1063/1.433874.Search in Google Scholar

54. Ariponnammal, S.; Shalini, S.; Devi, N.; Structural, S. Surface Morphological and Low Temperature Studies on Gadolinium Tri Chloride (GdCl3). Mater. Today: Proc. 2021, 35, 39. https://doi.org/10.1016/j.matpr.2019.05.406.Search in Google Scholar

55. Li, Y.; Cao, L.; Qiao, L.; Zhou, M.; Yang, Y.; Xiao, P.; Zhang, Y. Ni-Co Sulfide Nanowires on Nickel Foam with Ultrahigh Capacitance for Asymmetric Supercapacitors. J. Mater. Chem. A 2014, 2, 6540. https://doi.org/10.1039/C3TA15373H.Search in Google Scholar

56. Li, Y.; Peng, H.; Yang, L.; Dong, H.; Xiao, P. Investigating the Effect of Sulfur and Selenium on the Electrochemical Properties of Nickel-Cobalt Oxides: Enhanced Charge Capacity and Composition-Property Relationships. J. Mater. Sci. 2016, 51, 7108. https://doi.org/10.1007/s10853-016-9968-6.Search in Google Scholar

57. Lu, X. F.; Wu, D. J.; Li, R. Z.; Li, Q.; Ye, S. H.; Tong, Y. X.; Li, G. R. Hierarchical NiCo2O4 Nanosheets @ Hollow Microrod Arrays for High-Performance Asymmetric Supercapacitors. J. Mater. Chem. A 2014, 2, 4706. https://doi.org/10.1039/C3TA14930G.Search in Google Scholar

58. Ariponnammal, S.; Anusha, S. Structural and Spectroscopic Characterization of Ytterbium Tri Chloride (YbCl3). Mater. Today: Proc. 2022, 66, 1606. https://doi.org/10.1016/j.matpr.2022.05.248.Search in Google Scholar

59. Ismail, M. M.; Vigneshwaran, J.; Arunbalaji, S.; Mani, D.; Arivanandhan, M.; Jose, S. P.; Jayavel, R. Antimonene Nanosheets with Enhanced Electrochemical Performance for Energy Storage Applications. Dalton Trans. 2020, 49, 13717. https://doi.org/10.1039/D0DT01753A.Search in Google Scholar PubMed

60. Wu, H.; Lou, Z.; Yang, H.; Shen, G. A Flexible Spiral-type Supercapacitor Based on ZnCo2O4 Nanorod Electrodes. Nanoscale 2015, 7, 1921. https://doi.org/10.1039/C4NR06336H.Search in Google Scholar PubMed

61. Gupta, H.; Chakrabarti, S.; Mothkuri, S.; Padya, B.; Rao, T. N.; Jain, P. K. High Performance Supercapacitor Based on 2D-MoS2 Nanostructures. Mater. Today: Proc. 2020, 26, 20. https://doi.org/10.1016/j.matpr.2019.04.198.Search in Google Scholar

62. Sankar, K. V.; Kalpana, D.; Selvan, R. K. Electrochemical Properties of Microwave-Assisted Reflux-Synthesized Mn3O4 Nanoparticles in Different Electrolytes for Supercapacitor Applications. J. Appl. Electrochem. 2012, 42, 463. https://doi.org/10.1007/s10800-012-0424-2.Search in Google Scholar

63. Zhang, J.; Jiang, J.; Zhao, X. S. Synthesis and Capacitive Properties of Manganese Oxide Nanosheets Dispersed on Functionalized Graphene Sheets. J. Phys. Chem. C 2011, 115, 6448. https://doi.org/10.1021/jp200724h.Search in Google Scholar

64. Swaminathan, K.; Ramesh, K.; Govindaraju, V.; Thirugnanam, T.; Dinesh, A.; Ponnusamy, S.; Iqbal, M.; Ayyar, M. Effect of Reducing Agents on Structural, Morphological, Optical and Electrochemical Properties of Mn2O3 Nanoparticles by Co-precipitation Method. Z. Phys. Chem. 2024, 238, 239–260. https://doi.org/10.1515/zpch-2023-0391.Search in Google Scholar

65. Reddy, B. J.; Vickraman, P.; Justin, A. S. Synthesis and Characterization of Graphene/binary Metal Molybdate (Graphene/Zn1−xNixMoO4) Nanocomposite for Supercapacitors. Phys. Status Solidi A 2019, 216, 1800595. https://doi.org/10.1002/pssa.201800595.Search in Google Scholar

66. Xie, J.; Yang, P.; Wang, Y.; Qi, T.; Lei, Y.; Li, C. M. Puzzles and Confusions in Supercapacitor and Battery: Theory and Solutions. J. Power Sources 2018, 401, 213. https://doi.org/10.1016/j.jpowsour.2018.08.090.Search in Google Scholar

67. Badawy, W. A.; El-Rabiei, M. M.; Helal, N. H.; Nady, H. M. Electrochemical Behavior and Stability of Cu-Al-Ni Alloys in NaOH Solutions. Z. Phys. Chem. 2013, 227, 1143. https://doi.org/10.1524/zpch.2012.0347.Search in Google Scholar

68. Mei, B. A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J. Phys. Chem. C 2018, 122, 194. https://doi.org/10.1021/acs.jpcc.7b10582.Search in Google Scholar

69. https://partners.metrohm.com/GetDocumentPublic?action=get_dms_document&docid=2043973.Search in Google Scholar

70. Choi, W.; Shin, H. C.; Kim, J. M.; Choi, J. Y.; Yoon, W. S. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-Ion Batteries. J. Electrochem. Sci. Technol. 2020, 11, 1. https://doi.org/10.33961/jecst.2019.00528.Search in Google Scholar

71. Randviir, E. P.; Banks, C. E. Electrochemical Impedance Spectroscopy: An Overview of Bioanalytical Applications. Anal. Methods 2013, 5, 1098. https://doi.org/10.1039/C3AY26476A.Search in Google Scholar

72. Tariq, M. Electrochemistry of Br−/Br2 Redox Couple in Acetonitrile, Methanol and Mix Media of Acetonitrile–Methanol: An Insight into Redox Behavior of Bromide on Platinum (Pt) and Gold (Au) Electrode. Z. Phys. Chem. 2019, 234, 295. https://doi.org/10.1515/zpch-2018-1321.Search in Google Scholar

Received: 2024-02-29
Accepted: 2024-10-25
Published Online: 2024-12-06
Published in Print: 2025-08-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0755/html
Scroll to top button