Startseite Adsorptive removal of cadmium from electroplating wastewater using hybrid composite of thiol-grafted seed gum of Tamarindus indica and Teff hay biocarbon
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adsorptive removal of cadmium from electroplating wastewater using hybrid composite of thiol-grafted seed gum of Tamarindus indica and Teff hay biocarbon

  • Devendra Pratap Rao ORCID logo , Vimala Devi Krishnasamy , Mayakannan Selvaraju ORCID logo EMAIL logo , Venkatesa Prabhu Sundramurthy ORCID logo , Sumanth Ratna Kandavalli ORCID logo , Muthusamy Siva Chitra , Nanthakumar Sivasamy und Pradeep Thirumoorthy
Veröffentlicht/Copyright: 19. Juni 2024

Abstract

This study examined the methods for preparing biocarbon from Teff hay (TBC) and thiol-grafted seed gum of Tamarindus indica (TH@TI-TBC) with the purpose of removing cadmium (Cd) from polluted electroplating waste water. To improve biocarbon adsorption, seed gum and thiol were added in a two-step combination. At a pH of 5.5, the most effective Cd adsorption was seen with TH@TI-TBC (261.47 mg g−1). While comparing to the Freundlich and Temkin models, the Langmuir and pseudo-second-order kinetic models found to be the best fit to the obtained adsorption data. After being treated with electroplating wastewater having 30 mg−1 L of cadmium, TH@TI-TBC was able to remove up to 89 % of the Cd, proving its effectiveness in dealing with adsorptive removal of Cd. Experimental studies and computational analyses revealed that electrostatic interaction and surface complexation were the principal underlying processes for Cd removal by TH@TI-TBC. In addition, an innovative material that can transform the waste into a product for environmental remediation must be developed using the vast amounts of Teff hay that are generated as agro-residue. So, this work proved that TH@TI-TBC can be made from Teff hay biocarbon could be a potential candidate for removing Cd from industrial wastewater.


Corresponding author: Mayakannan Selvaraju, Department of Mechanical Engineering, Vidyaa Vikas College of Engineering and Technology, Tiruchengode, Namakkal, 637 214, Tamil Nadu, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: None declared.

  5. Data availability: All the data used in the manuscript are within the manuscript.

References

1. Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M. B.; Hay, A. G. Adsorption of Copper and Zinc by Biochars Produced From Pyrolysis of Hardwood and Corn Straw in Aqueous Solution. Bioresour. Technol. 2011, 102 (19), 8877–8884. https://doi.org/10.1016/j.biortech.2011.06.078.Suche in Google Scholar PubMed

2. Zeng, Z.; Zheng, P.; Kang, D.; Li, Y.; Li, W.; Xu, D.; Chen, W.; Pan, C. The Removal of Copper and Zinc From Swine Wastewater by Anaerobic Biological-Chemical Process: Performance and Mechanism. J. Hazard. Mater. 2021, 401, 123767. https://doi.org/10.1016/j.jhazmat.2020.123767.Suche in Google Scholar PubMed

3. Chen, J.; Gu, A.; Miensah, E. D.; Liu, Y.; Wang, P.; Mao, P.; Gong, C.; Jiao, Y.; Chen, K.; Yang, Y. Cu-Zn Bimetal ZIFs Derived Nanowhisker Zero-Valent Copper Decorated ZnO Nanocomposites Induced Oxygen Activation for High-Efficiency Iodide Elimination. J. Hazard. Mater. 2021, 416, 126097. https://doi.org/10.1016/j.jhazmat.2021.126097.Suche in Google Scholar PubMed

4. Huang, Q.; Zhao, J.; Liu, M.; Chen, J.; Zhu, X.; Wu, T.; Tian, J.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of Polyethylene Polyamine@tannic Acid Encapsulated MgAl-Layered Double Hydroxide for the Efficient Removal of Copper (II) Ions From Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2018, 82, 92–101. https://doi.org/10.1016/j.jtice.2017.10.019.Suche in Google Scholar

5. Jin, X.; Xiang, Z.; Liu, Q.; Chen, Y.; Lu, F. Polyethyleneimine-Bacterial Cellulose Bioadsorbent for Effective Removal of Copper and Lead Ions From Aqueous Solution. Bioresour. Technol. 2017, 244, 844–849. https://doi.org/10.1016/j.biortech.2017.08.072.Suche in Google Scholar PubMed

6. Inyang, M. I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y. S.; Cao, X. A Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal. Crit. Rev. Environ. Sci. Technol. 2016, 46 (4), 406–433. https://doi.org/10.1080/10643389.2015.1096880.Suche in Google Scholar

7. Periyasamy, S.; Asefa Adego, A.; Kumar, P. S.; Desta, G.; Zelalem, T.; Karthik, V.; Isabel, J. B.; Jayakumar, M.; Sundramurthy, V. P.; Rangasamy, G. Influencing Factors and Environmental Feasibility Analysis of Agricultural Waste Preprocessing Routes towards Biofuel Production – A Review. Biomass Bioenergy 2024, 180, 107001. https://doi.org/10.1016/j.biombioe.2023.107001.Suche in Google Scholar

8. Kerga, G. A.; Shibeshi, N. T.; Prabhu, S. V.; Varadharajan, V.; Yeshitla, A. Biosorption Potential of Purpureocillium lilacinum Biomass for Chromium (VI) Removal: Isolation, Characterization, and Significance of Growth Limiting Factors. Appl. Biol. Chem. 2023, 66 (1), 78; https://doi.org/10.1186/s13765-023-00834-x.Suche in Google Scholar

9. Tessema, B.; Gonfa, G.; Hailegiorgis, S. M.; Prabhu, S. V. Characteristic Investigations on Bio-Silica Gel Prepared From Teff (Eragrostis tef) Straw: Effect of Calcination Time. Mater. Res. Express 2023, 10 (11), 115102; https://doi.org/10.1088/2053-1591/ad09a7.Suche in Google Scholar

10. Keyore, A. A.; Sundramurthy, V. P.; Woldemariam, H. W. Statistical Modeling and Optimization for Ameliorating Physico-Chemical Characteristics of Enset (Ensete ventricosum) Starch Using Alcoholic–Alkaline Treatment Assisted by Freeze-Drying. Biomass Convers. Biorefin. 2023, https://doi.org/10.1007/s13399-023-04744-2.Suche in Google Scholar

11. Biswal, B. K.; Balasubramanian, R. Use of Biochar as a Low-Cost Adsorbent for Removal of Heavy Metals From Water and Wastewater: A Review. J. Environ. Chem. Eng. 2023, 11 (5), 110986. https://doi.org/10.1016/j.jece.2023.110986.Suche in Google Scholar

12. Nazik, G.; Aadil, M.; Zulfiqar, S.; Hassan, W.; Rahman, A.; Ibrahim, S. M.; Naseem, K.; Sheikh, T. A.; Akhtar, M. N. Synthesis of Doped Metal Sulfide Nanoparticles and Their Graphene Reinforced Nanohybrid for Pb(II) Detection. Z. Phys. Chem. 2023, 237 (8), 1257–1285.10.1515/zpch-2023-0252Suche in Google Scholar

13. Hussain, M.; Aadil, M.; Cochran, E. W.; Zulfiqar, S.; Hassan, W.; Kousar, T.; Somaily, H. H.; Mahmood, F. Facile Synthesis of a Porous Sorbent Derived From the Rice Husk Biomass: A New and Highly Efficient Material for Water Remediation. Inorg. Chem. Commun. 2024, 160, 112010. https://doi.org/10.1016/j.inoche.2023.112010.Suche in Google Scholar

14. Tariq, R.; Zulfiqar, S.; Somaily, H. H.; Warsi, M. F.; Ayman, I.; Hanif, F.; Akhtar, M.; Aadil, M. Synthesis of Carbon Supported Iron Oxide Nanochips and Their Composite with Glutathione: A Novel Electrochemical Sensitive Material. Surf. Interfaces 2022, 34, 102350. https://doi.org/10.1016/j.surfin.2022.102350.Suche in Google Scholar

15. Gupta, S.; Sireesha, S.; Sreedhar, I.; Patel, C. M.; Anitha, K. L. Latest Trends in Heavy Metal Removal From Wastewater by Biochar Based Sorbents. J. Water Process Eng. 2020, 38, 101561. https://doi.org/10.1016/j.jwpe.2020.101561.Suche in Google Scholar

16. Park, J.-H.; Ok, Y. S.; Kim, S. H.; Cho, J. S.; Heo, J. S.; Delaune, R. D.; Seo, D. C. Competitive Adsorption of Heavy Metals onto Sesame Straw Biochar in Aqueous Solutions. Chemosphere 2016, 142, 77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093.Suche in Google Scholar PubMed

17. Lakshmi, D.; Akhil, D.; Kartik, A.; Gopinath, K. P.; Arun, J.; Bhatnagar, A.; Rinklebe, J.; Kim, W.; Muthusamy, G. Artificial Intelligence (AI) Applications in Adsorption of Heavy Metals Using Modified Biochar. Sci. Total. Environ. 2021, 801, 149623. https://doi.org/10.1016/j.scitotenv.2021.149623.Suche in Google Scholar PubMed

18. Wang, H.; Xia, W.; Lu, P. Study on Adsorption Characteristics of Biochar on Heavy Metals in Soil. Korean J. Chem. Eng. 2017, 34 (6), 1867–1873; https://doi.org/10.1007/s11814-017-0048-7.Suche in Google Scholar

19. Zhou, R.; Zhang, M.; Shao, S. Optimization of Target Biochar for the Adsorption of Target Heavy Metal Ion. Sci. Rep. 2022, 12 (1), 13662; https://doi.org/10.1038/s41598-022-17901-w.Suche in Google Scholar PubMed PubMed Central

20. Ni, B.-J.; Huang, Q.-S.; Wang, C.; Ni, T.-Y.; Sun, J.; Wei, W. Competitive Adsorption of Heavy Metals in Aqueous Solution onto Biochar Derived From Anaerobically Digested Sludge. Chemosphere 2019, 219, 351–357. https://doi.org/10.1016/j.chemosphere.2018.12.053.Suche in Google Scholar PubMed

21. Shan, R.; Shi, Y.; Gu, J.; Wang, Y.; Yuan, H. Single and Competitive Adsorption Affinity of Heavy Metals toward Peanut Shell-Derived Biochar and its Mechanisms in Aqueous Systems. Chin. J. Chem. Eng. 2020, 28 (5), 1375–1383. https://doi.org/10.1016/j.cjche.2020.02.012.Suche in Google Scholar

22. Yu, W.; Lian, F.; Cui, G.; Liu, Z. N-Doping Effectively Enhances the Adsorption Capacity of Biochar for Heavy Metal Ions From Aqueous Solution. Chemosphere 2018, 193, 8–16. https://doi.org/10.1016/j.chemosphere.2017.10.134.Suche in Google Scholar PubMed

23. Kılıç, M.; Kırbıyık, Ç.; Çepelioğullar, Ö.; Pütün, A. E. Adsorption of Heavy Metal Ions From Aqueous Solutions by Bio-Char, a By-Product of Pyrolysis. Appl. Surf. Sci. 2013, 283, 856–862. https://doi.org/10.1016/j.apsusc.2013.07.033.Suche in Google Scholar

24. Wang, L.; Wang, Y.; Ma, F.; Tankpa, V.; Bai, S.; Guo, X.; Wang, X. Mechanisms and Reutilization of Modified Biochar Used for Removal of Heavy Metals From Wastewater: A Review. Sci. Total. Environ. 2019, 668, 1298–1309. https://doi.org/10.1016/j.scitotenv.2019.03.011.Suche in Google Scholar PubMed

25. Zhou, Y.; Gao, B.; Zimmerman, A. R.; Fang, J.; Sun, Y.; Cao, X. Sorption of Heavy Metals on Chitosan-Modified Biochars and its Biological Effects. Chem. Eng. J. 2013, 231, 512–518. https://doi.org/10.1016/j.cej.2013.07.036.Suche in Google Scholar

26. Zhang, H.; Xu, F.; Xue, J.; Chen, S.; Wang, J.; Yang, Y. Enhanced Removal of Heavy Metal Ions From Aqueous Solution Using Manganese Dioxide-Loaded Biochar: Behavior and Mechanism. Sci. Rep. 2020, 10 (1), 6067; https://doi.org/10.1038/s41598-020-63000-z.Suche in Google Scholar PubMed PubMed Central

27. Sundramurthy, V. P.; Varadharajan, V.; Wilson, V. H.; Jose, S.; Manoharan, S.; Alharbi, N. S.; Khaled, J. M.; Kandasamy, B.; Palanisamy, G. Adsorptive Removal of Cu(II) Ions From Aqueous Solution Using Teff (Eragrostis tef) Hay Based Magnetized Biocarbon: RSM-GA, ANN Based Optimization and Kinetics Aspects. Z. Phys. Chem. 2024, https://doi.org/10.1515/zpch-2024-0608.Suche in Google Scholar

28. Sharmiladevi, S.; Ramesh, N.; Prabhu, S. V.; Mayakannan, S. Microwave-Assisted Functionalized Biosorbent Preparation Using Seed Gum of Tamarindus indica: Characterization and Evaluation of Cr(VI) Removal Potency From Tannery Effluents. Biomass Conv. Bioref. 2024. https://doi.org/10.1007/s13399-024-05667-2.Suche in Google Scholar

29. Zhou, D.; Liu, D.; Gao, F.; Li, M.; Luo, X. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils. Int. J. Environ. Res. Public Health 2017, 14 (7), 681; https://doi.org/10.3390/ijerph14070681.Suche in Google Scholar PubMed PubMed Central

30. Zhang, X.; Wang, H.; He, L.; Lu, K.; Sarmah, A.; Li, J.; Bolan, N. S.; Pei, J.; Huang, H. Using Biochar for Remediation of Soils Contaminated with Heavy Metals and Organic Pollutants. Environ. Sci. Pollut. Res. 2013, 20 (12), 8472–8483; https://doi.org/10.1007/s11356-013-1659-0.Suche in Google Scholar PubMed

31. Boraah, N.; Chakma, S.; Kaushal, P. Attributes of Wood Biochar as an Efficient Adsorbent for Remediating Heavy Metals and Emerging Contaminants From Water: A Critical Review and Bibliometric Analysis. J. Environ. Chem. Eng. 2022, 10 (3), 107825. https://doi.org/10.1016/j.jece.2022.107825.Suche in Google Scholar

32. Singh, V.; Pant, N.; Sharma, R. K.; Padalia, D.; Rawat, P. S.; Goswami, R.; Singh, P.; Kumar, A.; Bhandari, P.; Tabish, A.; Deifalla, A. M. Adsorption Studies of Pb(II) and Cd(II) Heavy Metal Ions From Aqueous Solutions Using a Magnetic Biochar Composite Material. Separations 2023, 10 (7), 389; https://doi.org/10.3390/separations10070389.Suche in Google Scholar

33. Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability 2021, 13 (24), 14041; https://doi.org/10.3390/su132414041.Suche in Google Scholar

34. Chen, W.-H.; Hoang, A. T.; Nižetić, S.; Pandey, A.; Cheng, C. K.; Luque, R.; Ong, H. C.; Thomas, S.; Nguyen, X. P. Biomass-Derived Biochar: From Production to Application in Removing Heavy Metal-Contaminated Water. Process Saf. Environ. Prot. 2022, 160, 704–733. https://doi.org/10.1016/j.psep.2022.02.061.Suche in Google Scholar

35. Singh, E.; Kumar, A.; Mishra, R.; You, S.; Singh, L.; Kumar, S.; Kumar, R. Pyrolysis of Waste Biomass and Plastics for Production of Biochar and Its Use for Removal of Heavy Metals From Aqueous Solution. Bioresour. Technol. 2021, 320, 124278. https://doi.org/10.1016/j.biortech.2020.124278.Suche in Google Scholar PubMed

36. Qi, G.; Pan, Z.; Zhang, X.; Chang, S.; Wang, H.; Wang, M.; Xiang, W.; Gao, B. Microwave Biochar Produced with Activated Carbon Catalyst: Characterization and Adsorption of Heavy Metals. Environ. Res. 2023, 216, 114732. https://doi.org/10.1016/j.envres.2022.114732.Suche in Google Scholar PubMed

37. Gaddala, B.; Kandavalli, S. R.; Raghavendran, G.; Sivaprakash, A.; Rallabandi, R.; Sundramurthy, V. P.; Selvaraju, M.; Sugumar, M. Exploring the Impact of Hybridization on Green Composites: Pineapple Leaf and Sisal Fiber Reinforcement Using Poly(furfuryl alcohol) Bioresin. Z. Phys. Chem. 2024, https://doi.org/10.1515/zpch-2024-0772.Suche in Google Scholar

38. Liu, X.; Sun, J.; Duan, S.; Wang, Y.; Hayat, T.; Alsaedi, A.; Wang, C.; Li, J. A Valuable Biochar From Poplar Catkins with High Adsorption Capacity for Both Organic Pollutants and Inorganic Heavy Metal Ions. Sci. Rep. 2017, 7 (1), 10033; https://doi.org/10.1038/s41598-017-09446-0.Suche in Google Scholar PubMed PubMed Central

39. Hussain, A.; Maitra, J.; Khan, K. A. Development of Biochar and Chitosan Blend for Heavy Metals Uptake From Synthetic and Industrial Wastewater. Appl. Water Sci. 2017, 7 (8), 4525–4537; https://doi.org/10.1007/s13201-017-0604-7.Suche in Google Scholar

40. Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of Pyrolysis Temperature on Characteristics and Heavy Metal Adsorptive Performance of Biochar Derived From Municipal Sewage Sludge. Bioresour. Technol. 2014, 164, 47–54. https://doi.org/10.1016/j.biortech.2014.04.048.Suche in Google Scholar PubMed

41. Liao, W.; Zhang, X.; Ke, S.; Shao, J.; Yang, H.; Zhang, S.; Chen, H. Effect of Different Biomass Species and Pyrolysis Temperatures on Heavy Metal Adsorption, Stability and Economy of Biochar. Ind. Crops Prod. 2022, 186, 115238. https://doi.org/10.1016/j.indcrop.2022.115238.Suche in Google Scholar

42. Lin, S.; Huang, W.; Yang, H.; Sun, S.; Yu, J. Recycling Application of Waste Long-Root Eichhornia crassipes in the Heavy Metal Removal Using Oxidized Biochar Derived as Adsorbents. Bioresour. Technol. 2020, 314, 123749. https://doi.org/10.1016/j.biortech.2020.123749.Suche in Google Scholar PubMed

43. Wang, Y.; Liu, Y.; Zhan, W.; Zheng, K.; Wang, J.; Zhang, C.; Chen, R. Stabilization of Heavy Metal-Contaminated Soils by Biochar: Challenges and Recommendations. Sci. Total Environ. 2020, 729, 139060. https://doi.org/10.1016/j.scitotenv.2020.139060.Suche in Google Scholar PubMed

44. Joseph, S.; Van, H. T.; Mai, T. L. A.; Duong, T. M. H.; Weldon, S.; Munroe, P.; Mitchell, D.; Taherymoosavi, S. Immobilization of Heavy Metals in Contaminated Soil after Mining Activity by Using Biochar and Other Industrial By-Products: The Significant Role of Minerals on the Biochar Surfaces. Environ. Technol. 2019, 40, 3200–3215; https://doi.org/10.1080/09593330.2018.1468487.Suche in Google Scholar PubMed

45. Kołodyńska, D.; Krukowska, J.; Thomas, P. Comparison of Sorption and Desorption Studies of Heavy Metal Ions From Biochar and Commercial Active Carbon. Chem. Eng. J. 2017, 307, 353–363. https://doi.org/10.1016/j.cej.2016.08.088.Suche in Google Scholar

46. Wang, Y.; Liu, R. H2O2 Treatment Enhanced the Heavy Metals Removal by Manure Biochar in Aqueous Solutions. Sci. Total Environ. 2018, 628–629, 1139–1148. https://doi.org/10.1016/j.scitotenv.2018.02.137.Suche in Google Scholar PubMed

47. Huang, W.-H.; Chang, Y.-J.; Lee, D.-J. Layered Double Hydroxide Loaded Pinecone Biochar as Adsorbent for Heavy Metals and Phosphate Ion Removal From Water. Bioresour. Technol. 2024, 391, 129984. https://doi.org/10.1016/j.biortech.2023.129984.Suche in Google Scholar PubMed

48. Ling, L.-L.; Liu, W.-J.; Zhang, S.; Jiang, H. Magnesium Oxide Embedded Nitrogen Self-Doped Biochar Composites: Fast and High-Efficiency Adsorption of Heavy Metals in an Aqueous Solution. Environ. Sci. Technol. 2017, 51 (17), 10081–10089; https://doi.org/10.1021/acs.est.7b02382.Suche in Google Scholar PubMed

49. Yin, M.; Bai, X.; Wu, D.; Li, F.; Jiang, K.; Ma, N.; Chen, Z.; Zhang, X.; Fang, L. Sulfur-functional Group Tunning on Biochar through Sodium Thiosulfate Modified Molten Salt Process for Efficient Heavy Metal Adsorption. Chem. Eng. J. 2022, 433, 134441. https://doi.org/10.1016/j.cej.2021.134441.Suche in Google Scholar

50. Cataldo, S.; Chiodo, V.; Crea, F.; Maisano, S.; Milea, D.; Pettignano, A. Biochar From Byproduct to High Value Added Material – A New Adsorbent for Toxic Metal Ions Removal From Aqueous Solutions. J. Mol. Liq. 2018, 271, 481–489. https://doi.org/10.1016/j.molliq.2018.09.009.Suche in Google Scholar

51. Lee, S.-J.; Park, J. H.; Ahn, Y.-T.; Chung, J. W. Comparison of Heavy Metal Adsorption by Peat Moss and Peat Moss-Derived Biochar Produced under Different Carbonization Conditions. Water Air Soil Pollut. 2015, 226 (2), 9; https://doi.org/10.1007/s11270-014-2275-4.Suche in Google Scholar

52. Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Adsorption and Desorption of Heavy Metals by the Sewage Sludge and Biochar-Amended Soil. Environ. Geochem. Health 2019, 41 (4), 1663–1674; https://doi.org/10.1007/s10653-017-0036-1.Suche in Google Scholar PubMed PubMed Central

53. Ayesha, A. S.; Aadil, M.; Ejaz, S. R.; Anjum, S.; Saleem, T.; Zain, M.; Alsafari, I. A. Biological Synthesis of Nanostructured ZnO as a Solar-Light Driven Photocatalyst and Antimicrobial Agent. Ceram. Int. 2022, 48 (10), 14652–14661. https://doi.org/10.1016/j.ceramint.2022.01.359.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2024-0715).


Received: 2024-02-24
Accepted: 2024-05-20
Published Online: 2024-06-19
Published in Print: 2025-05-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0715/html?lang=de
Button zum nach oben scrollen