Startseite Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment

  • Ramasamy Subramanian EMAIL logo , Govindasamy Chinnadurai , Raman Suresh , Madhappan Santhamoorthy ORCID logo , Govindasami Periyasami ORCID logo , Perumal Karthikeyan , Anandhu Mohan EMAIL logo und Thi Tuong Vy Phan ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. Juni 2024

Abstract

The bioinorganic material, such as fish mucus macromolecules crowned zirconia nanoparticles (ZrO2 NPs) was synthesized via green methodology and has been investigated their efficacy on Gram-positive and Gram-negative bacterial strains that inhabit the oral cavity, gastrointestinal tracts, and colon. The environmentally benign synthesis methodology was used for fabricating biofunctionalized ZrO2 NPs with three different concentrations of C. striatus epidermal mucus. Spherical morphology with a size ranging from 7 to 25 nm of synthesized granular was identified by FESEM analysis. The powder XRD diffractions of synthesized ZrO2 NPs were confirmed with the previously reported standard literature. Upon being subjected to a primary microbial study, the synthesized ZrO2 NPs were shown to exhibit antibacterial activity against the tested bacterial pathogens. However, another Gram-negative bacterial stain, Proteus vulgaris shows almost similar efficiency to standard antibacterial drugs. Interestingly, all Gram-positive bacterial strains show a high zone of inhibition at higher concentrations of synthesized ZrO2 NPs. In general, the antibacterial activity study proved that the synthesized biofunctionalized ZrO2 NPs may be applied as an efficient health care beneficial material.


Corresponding authors: Ramasamy Subramanian, PG and Research Department of Chemistry, Sun Arts and Science College, Tiruvannamalai 606755, Tamil Nadu, India, E-mail: ; Anandhu Mohan, Department of Nano Science and Technology Convergence, General Graduate School, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea, E-mail: ; and Thi Tuong Vy Phan, Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam and Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam, E-mail:
Ramasamy Subramanian and Madhappan Santhamoorthy contributed equally to this work.

Funding source: King Saud University

Award Identifier / Grant number: RSPD2024R675

Acknowledgments

The project was supported by Researchers Supporting Project number (RSPD2024R675), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Author contributions: Ramasamy Subramanian, Govindasamy Chinnadurai, Govindasami Periyasami: Conceptualization, Methodology, Characterization and data analysis, original draft writing. Raman Suresh, Madhappan Santhamoorthy, Govindasami Periyasami, Perumal Karthikeyan, Anandhu Mohan, Thi Tuong Vy Phan: Data curation and rearrangement, Draft revising. Ramasamy Subramanian, Anandhu Mohan, Thi Tuong Vy Phan: Supervision, review, and editing.

  3. Competing interests: The authors have no conflicts to declare.

  4. Research funding: The project was supported by Researchers Supporting Project number (RSPD2024R675), King Saud University, Riyadh, Saudi Arabia.

  5. Data availability: Data availability on request.

References

1. Ram, S.; Mitra, M.; Shah, F.; Tirkey, S. R.; Mishra, S. J. Funct. Foods 2020, 67, 103867; https://doi.org/10.1016/j.jff.2020.103867.Suche in Google Scholar

2. Balakrishnan, C.; Manonmani, M.; Santhamoorthy, M.; Vinitha, G.; Meenakshisundaram, S. P. J. Mater. Sci.: Mater. Electron. 2023, 34, 2202; https://doi.org/10.1007/s10854-023-11635-9.Suche in Google Scholar

3. Moorthy, M. S.; Hoang, G.; Subramani, B.; Bui, N. Q.; Panchanathan, M.; Mondal, S.; Tuong, V. P. T.; Kim, H.; Oh, J. J. Mater. Chem. 2018, 6, 5220.10.1039/C8TB01214HSuche in Google Scholar PubMed

4. Bharathiraja, S.; Bui, N. Q.; Manivasagan, M.; Moorthy, M. S.; Mondal, S.; Seo, H.; Phuoc, N. T.; Phan, T. T. V.; Kim, H.; Lee, K. D.; Oh, J. Sci. Rep. 2018, 8, 500, https://doi.org/10.1038/s41598-017-18966-8.Suche in Google Scholar PubMed PubMed Central

5. Rasmussen, K.; Rauscher, H.; Mech, A.; Sintes, J. R.; Gilliland, D.; González, M.; Kearns, P.; Moss, K.; Visser, M.; Groenewold, M.; Bleeker, E. A. J. Regul. Toxicol. Pharmacol. 2018, 92, 8–28; https://doi.org/10.1016/j.yrtph.2017.10.019.Suche in Google Scholar PubMed PubMed Central

6. Madhappan, S; Ramkumar, V.; Thirupathi, K.; Gnanasekaran, L.; Karuppannan, V.; Phan, T. T. V.; Kim, S. C. Pharmaceutics 2023, 15, 1631–1648; https://doi.org/10.3390/pharmaceutics15061631.Suche in Google Scholar PubMed PubMed Central

7. Pan, S.; Goudoulas, T. B.; Jeevanandam, J.; Tan, K. X.; Chowdhury, S.; Danquah, M. K. Front. Bioeng. Biotechnol. 2021, 9, 724499; https://doi.org/10.3389/fbioe.2021.724499.Suche in Google Scholar PubMed PubMed Central

8. Bharathiraja, S.; Moorthy, M. S.; Manivasagan, P.; Seo, H.; Lee, K. D.; Oh, J. Photodiag. Phototherapy 2017, 19, 212–220; https://doi.org/10.1016/j.pdpdt.2017.06.001.Suche in Google Scholar PubMed

9. Mohan, A.; Ranganathan, S.; Munusamy, A.; Govinda, P.; Loganathan, G.; Lin, M. C.; Kumarasamy, K.; Kim, S. C.; Madhappan, S. Mater. Lett. 2024, 361, 136088–136092; https://doi.org/10.1016/j.matlet.2024.136088.Suche in Google Scholar

10. Chitoria, A. K.; Mir, A.; Shah, M. A. Ceram. Int. 2023, 49, 32343–32358; https://doi.org/10.1016/j.ceramint.2023.06.296.Suche in Google Scholar

11. Sumathi, P.; Renuka, N.; Subramanian, R.; Periyasami, G.; Rahaman, M.; Karthikeyan, P. Cell Biochem. Funct. 2023, 41, 676–686; https://doi.org/10.1002/cbf.3822.Suche in Google Scholar PubMed

12. Oh, Y.; Je, J. Y.; Moorthy, M. S.; Seo, H.; Cho, W. H. Int. J. Pharm. 2017, 531, 1. https://doi.org/10.1016/j.ijpharm.2017.07.014.Suche in Google Scholar PubMed

13. Moorthy, M. S.; Park, J.-H.; Bae, J.-H.; Kim, S.-H.; Ha, C.-S. J. Mater. Chem. B 2014, 2, 6487; https://doi.org/10.1039/c4tb00808a.Suche in Google Scholar PubMed

14. Mendes, B. B.; Conniot, J.; Avital, A.; Yao, D.; Jiang, X.; Zhou, X.; Sharf-Pauker, N.; Xiao, Y.; Adir, O.; Liang, H.; Shi, J.; Schroeder, A.; Conde, J. Nat. Rev. Methods Primers 2022, 2, 24; https://doi.org/10.1038/s43586-022-00104-y.Suche in Google Scholar PubMed PubMed Central

15. Moorthy, M. S.; Park, S. S.; Selvaraj, M.; Ha, C.-S. J. Nanosci. Nanotechnol. 2014, 14, 8891; https://doi.org/10.1166/jnn.2014.9957.Suche in Google Scholar PubMed

16. Yazdanian, M.; Rostamzadeh, P.; Rahbar, M.; Alam, M.; Abbasi, K.; Tahmasebi, E.; Tebyaniyan, H.; Ranjbar, R.; Seifalian, A.; Yazdanian, A. Bioinorg. Chem. Appl. 2022, 2311910, 2022, https://doi.org/10.1155/2022/2311910.Suche in Google Scholar PubMed PubMed Central

17. Mohan, A.; Suresh, R.; Ashwini, M.; Periyasami, G.; Guganathan, L.; Lin, M. C.; Kumarasamy, K.; Kim, S. C.; Madhappan, S. Mater. Lett. 2024, 361, 136088; https://doi.org/10.1016/j.matlet.2024.136088.Suche in Google Scholar

18. Bharathiraja, S.; Seo, H.; Manivasagan, P.; Moorthy, M. S.; Park, S.; Oh, J. Molecules 2016, 21, 1470; https://doi.org/10.3390/molecules21111470.Suche in Google Scholar PubMed PubMed Central

19. Moorthy, M. S.; Kim, H.-B.; Bae, J.-H.; Kim, S.-H.; Ha, C.-S. RSC Adv. 2016, 6, 29106; https://doi.org/10.1039/c5ra28143a.Suche in Google Scholar

20. Nam, N. H.; Luong, N. H. Materials for Biomedical Engineering; Elsevier: Amsterdam, Netherlands, 2019; pp. 211–240.10.1016/B978-0-08-102814-8.00008-1Suche in Google Scholar

21. Bui, N. Q.; Cho, S.-W.; Moorthy, M. S.; Park, S. M.; Piao, Z.; Nam, S. Y.; Kang, H. W.; Kim, C.-S.; Oh, J. Sci. Rep. 2018, 8, 2000; https://doi.org/10.1038/s41598-018-20139-0.Suche in Google Scholar PubMed PubMed Central

22. Thirupathi, K.; Rajesh, S.; Madhappan, S.; Gunasekaran, L.; Guganathan, L.; Phan, T. T. V.; Kim, S. C. Environ. Res. 2023, 224, 115439; https://doi.org/10.1016/j.envres.2023.115439.Suche in Google Scholar PubMed

23. Michael, A.; Singh, A.; Roy, A.; Islam, Md.R. Bioinorg. Chem. Appl. 2022, 14, 3142674.10.1155/2022/3142674Suche in Google Scholar PubMed PubMed Central

24. Oh, Y.; Moorthy, M. S.; Manivasagan, P.; Bharathiraja, S.; Oh, J. Biochimie 2017, 133, 7; https://doi.org/10.1016/j.biochi.2016.11.012.Suche in Google Scholar PubMed

25. Phan, T. T. V.; Bharathiraja, S.; Moorthy, M. S.; Manivasagan, P.; Lee, K. D.; Oh, J. RSC Adv. 2017, 7, 35027; https://doi.org/10.1039/c7ra02140b.Suche in Google Scholar

26. Reverter, M.; Tapissier-Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Fishes 2018, 3, 41; https://doi.org/10.3390/fishes3040041.Suche in Google Scholar

27. Chinnadurai, G.; Subramanian, R.; Selvi, P. Inorg. Nano-Met. Chem. 2020, 51, 550–559; https://doi.org/10.1080/24701556.2020.1799401.Suche in Google Scholar

28. Elangoa, M.; Deepa, M.; Subramanian, R.; Saraswathy, G. Mater. Chem. Phys. 2018, 216, 305–315; https://doi.org/10.1016/j.matchemphys.2018.05.049.Suche in Google Scholar

29. Jang, B.; Moorthy, M. S.; Manivasagan, P.; Xu, L.; Song, K.; Lee, K. D.; Kwak, M.; Oh, J.; Jin, J.-O. Oncotarget 2018, 9, 12649; https://doi.org/10.18632/oncotarget.23898.Suche in Google Scholar PubMed PubMed Central

30. Gowri, S.; Gandhi, R. R.; Sundrarajan, M. J. Mater. Sci. Technol. 2014, 30, 782–790; https://doi.org/10.1016/j.jmst.2014.03.002.Suche in Google Scholar

31. Manivasagan, P.; Bui, N. Q.; Bharathiraja, S.; Moorthy, M. S.; Oh, Y.-O.; Song, K.; Seo, H.; Yoon, M.; Oh, J.; Lee, K. D. Sci. Rep. 2017, 7, 43593; https://doi.org/10.1038/s41598-017-18966-8.Suche in Google Scholar PubMed PubMed Central

32. Thirupathi, K.; Phan, T. T. V.; Santhamoorthy, M.; Ramkumar, V.; Kim, S.-C. Polymers 2022, 15, 167; https://doi.org/10.3390/polym15010167.Suche in Google Scholar PubMed PubMed Central

33. Chinnadurai, G.; Subramanian, R.; Ahamed, M. Mater. Res. Express 2020, 7, 125012; https://doi.org/10.1088/2053-1591/abcee7.Suche in Google Scholar

34. Park, S. S.; Moorthy, M. S.; Song, H. J.; Ha, C. S. J. Nanosci. Nanotechnol. 2014, 14, 8845; https://doi.org/10.1166/jnn.2014.9956.Suche in Google Scholar

35. Ramkumar, V.; Raorane, C. J.; Christy, H. J.; Anandhi, S.; Santhamoorthy, M.; Kamachiappan, P.; Ashokkumar, A.; Balamurugan, S.; Kim, S. C. J. Mol. Struct. 2023, 1292, 136109; https://doi.org/10.1016/j.molstruc.2023.136109.Suche in Google Scholar

36. Thirupathi, K.; Raorane, C. J.; Ramkumar, V.; Ulagesan, S.; Santhamoorthy, M.; Raj, V.; Krishnakumar, G. S.; Phan, T. T. V.; Kim, S.-C. Gels 2022, 9, 35; https://doi.org/10.3390/gels9010035.Suche in Google Scholar PubMed PubMed Central

37. Sana, S. S.; Madhappan, S.; Haldar, R.; Raorane, C. J.; Iravani, S.; Varma, R. S.; Kim, S. C. Z. Phys. Chem. 2023, 132, 200–220; https://doi.org/10.1016/j.procbio.2023.06.022.Suche in Google Scholar

38. Santhamoorthy, M.; Vanaraj, R.; Thirupathi, K.; Ulagesan, S.; Nam, T.-J.; Phan, T. T. V.; Kim, S.-C. Gels 2023, 9, 363; https://doi.org/10.3390/gels9050363.Suche in Google Scholar PubMed PubMed Central

39. Gu, X.; Chen, J.; Yang, X.; Zhou, W.; Yang, L. Z. Phys. Chem. 2023, 237, 1941–1953; https://doi.org/10.1515/zpch-2023-0299.Suche in Google Scholar

40. Madhappan, S.; Thirumalai, T.; Thirupathi, K.; Kim, S. C. Appl. Nanosci. 2023, 13, 6015–6024; https://doi.org/10.1007/s13204-022-02531-5.Suche in Google Scholar

41. Mohan, A.; Santhamoorthy, M.; Phan, T. T. V.; Kim, S. C. Gels 2024, 10, 184; https://doi.org/10.3390/gels10030184.Suche in Google Scholar PubMed PubMed Central

42. Santhamoorthy, M.; Mohan, A.; Mani, K. S.; Devendhiran, T.; Periyasami, G.; Kim, S. C.; Lin, M. C.; Kumarasamy, K.; Huang, P. G.; Ali, A. Methods 2024, 223, 26; https://doi.org/10.1016/j.ymeth.2024.01.010.Suche in Google Scholar PubMed

43. Santhamoorthy, M.; Kim, S. C. Gels 2023, 9, 536–549; https://doi.org/10.3390/gels9070536.Suche in Google Scholar PubMed PubMed Central

44. Ulagesan, S.; Madhappan, S.; Phan, T. T. V.; Alagumalai, K.; Thirupathi, K.; Kim, S. C.; Nam, T. J.; Choi, Y. H. Inorg. Chem. Commun. 2022, 146, 110132; https://doi.org/10.1016/j.inoche.2022.110132.Suche in Google Scholar

45. Devaraj, M.; Rajendran, S.; Gracia, F.; Ansar, S.; Santhamoorthy, M.; Matias, S. M.; Gracia-Pinnila, M. A. Env. Res. 2022, 215, 114427; https://doi.org/10.1016/j.envres.2022.114427.Suche in Google Scholar PubMed

46. Madhappan, S.; Kunasekaran, U.; Thirupathi, K.; Thirumalai, T.; Kim, S. C. Mater. Lett. 2022, 313, 131786–131790; https://doi.org/10.1016/j.matlet.2022.131786.Suche in Google Scholar

Received: 2023-11-30
Accepted: 2024-05-28
Published Online: 2024-06-12
Published in Print: 2025-05-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0505/html
Button zum nach oben scrollen