Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment
-
Ramasamy Subramanian
, Govindasamy Chinnadurai
, Govindasami Periyasami
, Perumal Karthikeyan
und Thi Tuong Vy Phan
Abstract
The bioinorganic material, such as fish mucus macromolecules crowned zirconia nanoparticles (ZrO2 NPs) was synthesized via green methodology and has been investigated their efficacy on Gram-positive and Gram-negative bacterial strains that inhabit the oral cavity, gastrointestinal tracts, and colon. The environmentally benign synthesis methodology was used for fabricating biofunctionalized ZrO2 NPs with three different concentrations of C. striatus epidermal mucus. Spherical morphology with a size ranging from 7 to 25 nm of synthesized granular was identified by FESEM analysis. The powder XRD diffractions of synthesized ZrO2 NPs were confirmed with the previously reported standard literature. Upon being subjected to a primary microbial study, the synthesized ZrO2 NPs were shown to exhibit antibacterial activity against the tested bacterial pathogens. However, another Gram-negative bacterial stain, Proteus vulgaris shows almost similar efficiency to standard antibacterial drugs. Interestingly, all Gram-positive bacterial strains show a high zone of inhibition at higher concentrations of synthesized ZrO2 NPs. In general, the antibacterial activity study proved that the synthesized biofunctionalized ZrO2 NPs may be applied as an efficient health care beneficial material.
Funding source: King Saud University
Award Identifier / Grant number: RSPD2024R675
Acknowledgments
The project was supported by Researchers Supporting Project number (RSPD2024R675), King Saud University, Riyadh, Saudi Arabia.
-
Research ethics: Not applicable.
-
Author contributions: Ramasamy Subramanian, Govindasamy Chinnadurai, Govindasami Periyasami: Conceptualization, Methodology, Characterization and data analysis, original draft writing. Raman Suresh, Madhappan Santhamoorthy, Govindasami Periyasami, Perumal Karthikeyan, Anandhu Mohan, Thi Tuong Vy Phan: Data curation and rearrangement, Draft revising. Ramasamy Subramanian, Anandhu Mohan, Thi Tuong Vy Phan: Supervision, review, and editing.
-
Competing interests: The authors have no conflicts to declare.
-
Research funding: The project was supported by Researchers Supporting Project number (RSPD2024R675), King Saud University, Riyadh, Saudi Arabia.
-
Data availability: Data availability on request.
References
1. Ram, S.; Mitra, M.; Shah, F.; Tirkey, S. R.; Mishra, S. J. Funct. Foods 2020, 67, 103867; https://doi.org/10.1016/j.jff.2020.103867.Suche in Google Scholar
2. Balakrishnan, C.; Manonmani, M.; Santhamoorthy, M.; Vinitha, G.; Meenakshisundaram, S. P. J. Mater. Sci.: Mater. Electron. 2023, 34, 2202; https://doi.org/10.1007/s10854-023-11635-9.Suche in Google Scholar
3. Moorthy, M. S.; Hoang, G.; Subramani, B.; Bui, N. Q.; Panchanathan, M.; Mondal, S.; Tuong, V. P. T.; Kim, H.; Oh, J. J. Mater. Chem. 2018, 6, 5220.10.1039/C8TB01214HSuche in Google Scholar PubMed
4. Bharathiraja, S.; Bui, N. Q.; Manivasagan, M.; Moorthy, M. S.; Mondal, S.; Seo, H.; Phuoc, N. T.; Phan, T. T. V.; Kim, H.; Lee, K. D.; Oh, J. Sci. Rep. 2018, 8, 500, https://doi.org/10.1038/s41598-017-18966-8.Suche in Google Scholar PubMed PubMed Central
5. Rasmussen, K.; Rauscher, H.; Mech, A.; Sintes, J. R.; Gilliland, D.; González, M.; Kearns, P.; Moss, K.; Visser, M.; Groenewold, M.; Bleeker, E. A. J. Regul. Toxicol. Pharmacol. 2018, 92, 8–28; https://doi.org/10.1016/j.yrtph.2017.10.019.Suche in Google Scholar PubMed PubMed Central
6. Madhappan, S; Ramkumar, V.; Thirupathi, K.; Gnanasekaran, L.; Karuppannan, V.; Phan, T. T. V.; Kim, S. C. Pharmaceutics 2023, 15, 1631–1648; https://doi.org/10.3390/pharmaceutics15061631.Suche in Google Scholar PubMed PubMed Central
7. Pan, S.; Goudoulas, T. B.; Jeevanandam, J.; Tan, K. X.; Chowdhury, S.; Danquah, M. K. Front. Bioeng. Biotechnol. 2021, 9, 724499; https://doi.org/10.3389/fbioe.2021.724499.Suche in Google Scholar PubMed PubMed Central
8. Bharathiraja, S.; Moorthy, M. S.; Manivasagan, P.; Seo, H.; Lee, K. D.; Oh, J. Photodiag. Phototherapy 2017, 19, 212–220; https://doi.org/10.1016/j.pdpdt.2017.06.001.Suche in Google Scholar PubMed
9. Mohan, A.; Ranganathan, S.; Munusamy, A.; Govinda, P.; Loganathan, G.; Lin, M. C.; Kumarasamy, K.; Kim, S. C.; Madhappan, S. Mater. Lett. 2024, 361, 136088–136092; https://doi.org/10.1016/j.matlet.2024.136088.Suche in Google Scholar
10. Chitoria, A. K.; Mir, A.; Shah, M. A. Ceram. Int. 2023, 49, 32343–32358; https://doi.org/10.1016/j.ceramint.2023.06.296.Suche in Google Scholar
11. Sumathi, P.; Renuka, N.; Subramanian, R.; Periyasami, G.; Rahaman, M.; Karthikeyan, P. Cell Biochem. Funct. 2023, 41, 676–686; https://doi.org/10.1002/cbf.3822.Suche in Google Scholar PubMed
12. Oh, Y.; Je, J. Y.; Moorthy, M. S.; Seo, H.; Cho, W. H. Int. J. Pharm. 2017, 531, 1. https://doi.org/10.1016/j.ijpharm.2017.07.014.Suche in Google Scholar PubMed
13. Moorthy, M. S.; Park, J.-H.; Bae, J.-H.; Kim, S.-H.; Ha, C.-S. J. Mater. Chem. B 2014, 2, 6487; https://doi.org/10.1039/c4tb00808a.Suche in Google Scholar PubMed
14. Mendes, B. B.; Conniot, J.; Avital, A.; Yao, D.; Jiang, X.; Zhou, X.; Sharf-Pauker, N.; Xiao, Y.; Adir, O.; Liang, H.; Shi, J.; Schroeder, A.; Conde, J. Nat. Rev. Methods Primers 2022, 2, 24; https://doi.org/10.1038/s43586-022-00104-y.Suche in Google Scholar PubMed PubMed Central
15. Moorthy, M. S.; Park, S. S.; Selvaraj, M.; Ha, C.-S. J. Nanosci. Nanotechnol. 2014, 14, 8891; https://doi.org/10.1166/jnn.2014.9957.Suche in Google Scholar PubMed
16. Yazdanian, M.; Rostamzadeh, P.; Rahbar, M.; Alam, M.; Abbasi, K.; Tahmasebi, E.; Tebyaniyan, H.; Ranjbar, R.; Seifalian, A.; Yazdanian, A. Bioinorg. Chem. Appl. 2022, 2311910, 2022, https://doi.org/10.1155/2022/2311910.Suche in Google Scholar PubMed PubMed Central
17. Mohan, A.; Suresh, R.; Ashwini, M.; Periyasami, G.; Guganathan, L.; Lin, M. C.; Kumarasamy, K.; Kim, S. C.; Madhappan, S. Mater. Lett. 2024, 361, 136088; https://doi.org/10.1016/j.matlet.2024.136088.Suche in Google Scholar
18. Bharathiraja, S.; Seo, H.; Manivasagan, P.; Moorthy, M. S.; Park, S.; Oh, J. Molecules 2016, 21, 1470; https://doi.org/10.3390/molecules21111470.Suche in Google Scholar PubMed PubMed Central
19. Moorthy, M. S.; Kim, H.-B.; Bae, J.-H.; Kim, S.-H.; Ha, C.-S. RSC Adv. 2016, 6, 29106; https://doi.org/10.1039/c5ra28143a.Suche in Google Scholar
20. Nam, N. H.; Luong, N. H. Materials for Biomedical Engineering; Elsevier: Amsterdam, Netherlands, 2019; pp. 211–240.10.1016/B978-0-08-102814-8.00008-1Suche in Google Scholar
21. Bui, N. Q.; Cho, S.-W.; Moorthy, M. S.; Park, S. M.; Piao, Z.; Nam, S. Y.; Kang, H. W.; Kim, C.-S.; Oh, J. Sci. Rep. 2018, 8, 2000; https://doi.org/10.1038/s41598-018-20139-0.Suche in Google Scholar PubMed PubMed Central
22. Thirupathi, K.; Rajesh, S.; Madhappan, S.; Gunasekaran, L.; Guganathan, L.; Phan, T. T. V.; Kim, S. C. Environ. Res. 2023, 224, 115439; https://doi.org/10.1016/j.envres.2023.115439.Suche in Google Scholar PubMed
23. Michael, A.; Singh, A.; Roy, A.; Islam, Md.R. Bioinorg. Chem. Appl. 2022, 14, 3142674.10.1155/2022/3142674Suche in Google Scholar PubMed PubMed Central
24. Oh, Y.; Moorthy, M. S.; Manivasagan, P.; Bharathiraja, S.; Oh, J. Biochimie 2017, 133, 7; https://doi.org/10.1016/j.biochi.2016.11.012.Suche in Google Scholar PubMed
25. Phan, T. T. V.; Bharathiraja, S.; Moorthy, M. S.; Manivasagan, P.; Lee, K. D.; Oh, J. RSC Adv. 2017, 7, 35027; https://doi.org/10.1039/c7ra02140b.Suche in Google Scholar
26. Reverter, M.; Tapissier-Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Fishes 2018, 3, 41; https://doi.org/10.3390/fishes3040041.Suche in Google Scholar
27. Chinnadurai, G.; Subramanian, R.; Selvi, P. Inorg. Nano-Met. Chem. 2020, 51, 550–559; https://doi.org/10.1080/24701556.2020.1799401.Suche in Google Scholar
28. Elangoa, M.; Deepa, M.; Subramanian, R.; Saraswathy, G. Mater. Chem. Phys. 2018, 216, 305–315; https://doi.org/10.1016/j.matchemphys.2018.05.049.Suche in Google Scholar
29. Jang, B.; Moorthy, M. S.; Manivasagan, P.; Xu, L.; Song, K.; Lee, K. D.; Kwak, M.; Oh, J.; Jin, J.-O. Oncotarget 2018, 9, 12649; https://doi.org/10.18632/oncotarget.23898.Suche in Google Scholar PubMed PubMed Central
30. Gowri, S.; Gandhi, R. R.; Sundrarajan, M. J. Mater. Sci. Technol. 2014, 30, 782–790; https://doi.org/10.1016/j.jmst.2014.03.002.Suche in Google Scholar
31. Manivasagan, P.; Bui, N. Q.; Bharathiraja, S.; Moorthy, M. S.; Oh, Y.-O.; Song, K.; Seo, H.; Yoon, M.; Oh, J.; Lee, K. D. Sci. Rep. 2017, 7, 43593; https://doi.org/10.1038/s41598-017-18966-8.Suche in Google Scholar PubMed PubMed Central
32. Thirupathi, K.; Phan, T. T. V.; Santhamoorthy, M.; Ramkumar, V.; Kim, S.-C. Polymers 2022, 15, 167; https://doi.org/10.3390/polym15010167.Suche in Google Scholar PubMed PubMed Central
33. Chinnadurai, G.; Subramanian, R.; Ahamed, M. Mater. Res. Express 2020, 7, 125012; https://doi.org/10.1088/2053-1591/abcee7.Suche in Google Scholar
34. Park, S. S.; Moorthy, M. S.; Song, H. J.; Ha, C. S. J. Nanosci. Nanotechnol. 2014, 14, 8845; https://doi.org/10.1166/jnn.2014.9956.Suche in Google Scholar
35. Ramkumar, V.; Raorane, C. J.; Christy, H. J.; Anandhi, S.; Santhamoorthy, M.; Kamachiappan, P.; Ashokkumar, A.; Balamurugan, S.; Kim, S. C. J. Mol. Struct. 2023, 1292, 136109; https://doi.org/10.1016/j.molstruc.2023.136109.Suche in Google Scholar
36. Thirupathi, K.; Raorane, C. J.; Ramkumar, V.; Ulagesan, S.; Santhamoorthy, M.; Raj, V.; Krishnakumar, G. S.; Phan, T. T. V.; Kim, S.-C. Gels 2022, 9, 35; https://doi.org/10.3390/gels9010035.Suche in Google Scholar PubMed PubMed Central
37. Sana, S. S.; Madhappan, S.; Haldar, R.; Raorane, C. J.; Iravani, S.; Varma, R. S.; Kim, S. C. Z. Phys. Chem. 2023, 132, 200–220; https://doi.org/10.1016/j.procbio.2023.06.022.Suche in Google Scholar
38. Santhamoorthy, M.; Vanaraj, R.; Thirupathi, K.; Ulagesan, S.; Nam, T.-J.; Phan, T. T. V.; Kim, S.-C. Gels 2023, 9, 363; https://doi.org/10.3390/gels9050363.Suche in Google Scholar PubMed PubMed Central
39. Gu, X.; Chen, J.; Yang, X.; Zhou, W.; Yang, L. Z. Phys. Chem. 2023, 237, 1941–1953; https://doi.org/10.1515/zpch-2023-0299.Suche in Google Scholar
40. Madhappan, S.; Thirumalai, T.; Thirupathi, K.; Kim, S. C. Appl. Nanosci. 2023, 13, 6015–6024; https://doi.org/10.1007/s13204-022-02531-5.Suche in Google Scholar
41. Mohan, A.; Santhamoorthy, M.; Phan, T. T. V.; Kim, S. C. Gels 2024, 10, 184; https://doi.org/10.3390/gels10030184.Suche in Google Scholar PubMed PubMed Central
42. Santhamoorthy, M.; Mohan, A.; Mani, K. S.; Devendhiran, T.; Periyasami, G.; Kim, S. C.; Lin, M. C.; Kumarasamy, K.; Huang, P. G.; Ali, A. Methods 2024, 223, 26; https://doi.org/10.1016/j.ymeth.2024.01.010.Suche in Google Scholar PubMed
43. Santhamoorthy, M.; Kim, S. C. Gels 2023, 9, 536–549; https://doi.org/10.3390/gels9070536.Suche in Google Scholar PubMed PubMed Central
44. Ulagesan, S.; Madhappan, S.; Phan, T. T. V.; Alagumalai, K.; Thirupathi, K.; Kim, S. C.; Nam, T. J.; Choi, Y. H. Inorg. Chem. Commun. 2022, 146, 110132; https://doi.org/10.1016/j.inoche.2022.110132.Suche in Google Scholar
45. Devaraj, M.; Rajendran, S.; Gracia, F.; Ansar, S.; Santhamoorthy, M.; Matias, S. M.; Gracia-Pinnila, M. A. Env. Res. 2022, 215, 114427; https://doi.org/10.1016/j.envres.2022.114427.Suche in Google Scholar PubMed
46. Madhappan, S.; Kunasekaran, U.; Thirupathi, K.; Thirumalai, T.; Kim, S. C. Mater. Lett. 2022, 313, 131786–131790; https://doi.org/10.1016/j.matlet.2022.131786.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Adsorptive removal of cadmium from electroplating wastewater using hybrid composite of thiol-grafted seed gum of Tamarindus indica and Teff hay biocarbon
- Unusual behavior in thermodynamical properties of chitosan-lanthanide oxide composites: competition between the size and mass
- Exploring structural and optical properties of shock wave-loaded polycrystalline picric acid: implications for molecular engineering applications
- Bi2Se3/ZnSe heterojunction on flexible Mo metal foil for photo electrolysis water splitting application
- Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment
- Influence of yttrium doping on the photocatalytic behaviour of lanthanum titanate: a material for water treatment
- Bioresin based hybrid green composite preparation using Holoptelea integrifolia fibers reinforced by Ziziphus jujuba seed particles: a fuzzy logic assisted optimization of mechanical behaviour
- Tamm plasmon-induced impressive optical nonlinearity of silver@graphite core–shell nanostructures
- Reversible photoluminescence shift in imidazolium l-tartrate crystal triggered by acoustic shock waves
- Sol–gel synthesized lithium–cobalt co-doped titanium (IV) oxide nanocomposite as an efficient photocatalyst for environmental remediation
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Adsorptive removal of cadmium from electroplating wastewater using hybrid composite of thiol-grafted seed gum of Tamarindus indica and Teff hay biocarbon
- Unusual behavior in thermodynamical properties of chitosan-lanthanide oxide composites: competition between the size and mass
- Exploring structural and optical properties of shock wave-loaded polycrystalline picric acid: implications for molecular engineering applications
- Bi2Se3/ZnSe heterojunction on flexible Mo metal foil for photo electrolysis water splitting application
- Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment
- Influence of yttrium doping on the photocatalytic behaviour of lanthanum titanate: a material for water treatment
- Bioresin based hybrid green composite preparation using Holoptelea integrifolia fibers reinforced by Ziziphus jujuba seed particles: a fuzzy logic assisted optimization of mechanical behaviour
- Tamm plasmon-induced impressive optical nonlinearity of silver@graphite core–shell nanostructures
- Reversible photoluminescence shift in imidazolium l-tartrate crystal triggered by acoustic shock waves
- Sol–gel synthesized lithium–cobalt co-doped titanium (IV) oxide nanocomposite as an efficient photocatalyst for environmental remediation