Exploring structural and optical properties of shock wave-loaded polycrystalline picric acid: implications for molecular engineering applications
-
Muthuvel Vijayan
, Sivakumar Aswathppa
, Raju Suresh Kumar
und Martin Britto Dhas Sathiyadhas Amalapushpam
Abstract
The shock wave impact on hydrogen-bonded organic materials’ structural properties and their responses with respect to their associated functional properties is one of the most prevalent research topics because of the possible emergence of unusual functional properties. Presently, we intend to examine the structural response of the poly-crystalline picric acid samples under shocked conditions. The crystallographic structural responses and the linear optical properties of the test samples have been examined by powder XRD analysis, ultra-violet diffused reflectance spectroscopy (UV-DRS) and Raman spectroscopy, respectively. Under shocked conditions, a considerable modification in the diffraction peak positions and their intensity changes could be witnessed. Notably, linear optical transmittance profiles show remarkable changes according to the number of applied shock pulses, such that the 150-shocked sample has the highest optical transmittance of 53.9 % at 350 nm, whereas the control sample has an optical transmittance of 6.6 %. The Raman spectrum shows the vibrational groups of material that are stable in shocked conditions with similar intensity changes. Based on the obtained XRD, UV-DRS and Raman results, shock wave-induced picric acid samples have remarkably improved characteristics of optical transmittance, which is highly favorable for non-linear optical applications.
Acknowledgment
The authors thank the Abraham Panampara Research Fellowship (APRF), Sacred Heart College, Tirupattur, Tamilnadu, India.
-
Research ethics: The study was performed in accordance with the Declaration under the terms of relevant local legislation.
-
Author contributions: All authors have accepted responsibility for the entire content of the manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest regarding the publication of this paper.
-
Research funding: This research work was supported by the Researchers Supporting Project number (RSP2024R142), King Saud University, Riyadh, Saudi Arabia.
-
Data availability: The data can be obtained on request from the corresponding author.
References
1. Winey, J. M.; Zimmerman, K.; Dreger, Z. A.; Gupta, Y. M. J. Phys. Chem. A 2020, 124 (32), 6521–6527; https://doi.org/10.1021/acs.jpca.0c04862.Suche in Google Scholar PubMed
2. Zhou, X.; Miao, Y.-R.; Shaw, W. L.; Suslick, K. S.; Dlott, D. D. J. Am. Chem. Soc. 2019, 141, 2220–2223; https://doi.org/10.1021/jacs.8b12905.Suche in Google Scholar PubMed
3. Leiserowitz, L.; Schmidt, g. M. J.; Shamgar, A. J. Phys. Chem. Solids 1966, 27, 1453–1457; https://doi.org/10.1016/0022-3697(66)90140-5.Suche in Google Scholar
4. Renganathan, P.; Gupta, Y. M. J. Appl. Phys. 2019, 126, 115902; https://doi.org/10.1063/1.5116822.Suche in Google Scholar
5. Vasu, K.; Matte, H. S. S. R.; Shirodkar, S. N.; Jayaram, V.; Reddy, K. P. J.; Waghmare, U. V.; Rao, C. N. R. Chem. Phys. Lett. 2013, 582, 105–109; https://doi.org/10.1016/j.cplett.2013.07.044.Suche in Google Scholar
6. Kalaiarasi, S.; Sivakumar, A.; Martin Britto Dhas, S. A.; Jose, M. Mater. Lett. 2018, 219, 72–75; https://doi.org/10.1016/j.matlet.2018.02.064.Suche in Google Scholar
7. Mashimo, T.; Uchino, M.; Nakamura, A.; Kobayashi, T.; Takasawa, E.; Sekine, T.; Noguchi, Y.; Hikosaka, H.; Fukuoka, K.; Syono, Y. J. Appl. Phys. 1999, 86, 6710; https://doi.org/10.1063/1.371749.Suche in Google Scholar
8. Tang, Z. P.; Gupta, Y. M. J. Appl. Phys. 1997, 81, 7203; https://doi.org/10.1063/1.365319.Suche in Google Scholar
9. Larson, D. B. J. Appl. Phys. 1967, 38, 1541; https://doi.org/10.1063/1.1709720.Suche in Google Scholar
10. Kadhu, K.; Germann, T. C.; Lomdahl, P. S. Brad Lee Holian 2002, 296, 1681–1684.10.1126/science.1070375Suche in Google Scholar PubMed
11. Gust, W. H. Phys. Rev. B 1980, 22, 4744; https://doi.org/10.1103/physrevb.22.4744.Suche in Google Scholar
12. Yu, Y.; Tan, Ye; Dai, C.; Li, X.; Li, Y.; Wu, Q.; Tan, H. Appl. Phys. Lett. 2014, 105, 201910; https://doi.org/10.1063/1.4902374.Suche in Google Scholar
13. Mashimo, T.; Nakamura, A.; Kodama, M.; Kusaba, K.; Fukuoka, K.; Syono, Y. J. Appl. Phys. 1995, 77, 5060; https://doi.org/10.1063/1.359314.Suche in Google Scholar
14. Hu, J.; Zhou, X.; Tan, H.; Li, J.; Dai, C. Appl. Phys. Lett. 2008, 92, 111905; https://doi.org/10.1063/1.2898891.Suche in Google Scholar
15. Sivakumar, A.; Sahaya Jude Dhas, S.; Sivaprakash, P.; Almansour, A. I.; Suresh Kumar, R.; Arumugam, N.; Arumugam, S.; Martin Britto Dhas, S. A. New J. Chem. 2021, 45, 16529; https://doi.org/10.1039/d1nj02974f.Suche in Google Scholar
16. Sivakumar, A.; Reena Devi, S.; Sahaya Jude Dhas, S.; Mohan Kumar, R.; Kamala Bharathi, K.; Martin Britto Dhas, S. A. Cryst. Growth Des. 2020, 20 (11), 7111–7119; https://doi.org/10.1021/acs.cgd.0c00214.Suche in Google Scholar
17. Sivakumar, A.; Shailaja, P.; Sahaya Jude Dhas, S.; Sivaprakash, P.; Almansour, A. I.; Suresh Kumar, R.; Arumugam, N.; Arumugam, S.; Chakraborty, S.; Martin Britto Dhas, S. A. Cryst. Growth Des. 2021, 21 (9), 5050–5057; https://doi.org/10.1021/acs.cgd.1c00476.Suche in Google Scholar
18. Sivakumar, A.; Sahaya Jude Dhas, S.; Almansour, A. I.; Suresh Kumar, R.; Arumugam, N.; Martin Britto Dhas, S. A. CrystEngComm 2021, 23, 7044.10.1039/D1CE01118ASuche in Google Scholar
19. Sivakumar, A.; Sahaya Jude Dhas, S.; Chakraborty, S.; Suresh Kumar, R.; Almansour, A. I.; Arumugam, N.; Martin Britto Dhas, S. A. J. Phys. Chem. C 2022, 126, 3194–3201.10.1021/acs.jpcc.1c09411Suche in Google Scholar
20. Senthil Pandian, M.; Charoen In, U.; Ramasamy, P.; Manyum, P.; Lenin, M.; Balamurugan, N. J. Cryst. Growth 2010, 312, 397–401; https://doi.org/10.1016/j.jcrysgro.2009.10.060.Suche in Google Scholar
21. Sivakumar, A.; Martin Britto Dhas, S. A. J. Appl. Cryst. 2019, 52, 1016–1021; https://doi.org/10.1107/s1600576719009488.Suche in Google Scholar
22. Thirupathy, J.; Sahaya Jude Dhas, S.; Jose, M.; Martin Britto Dhas, S. A. J. Mater. Sci.: Mater. Electron. 2020, 31, 14531–14536; https://doi.org/10.1007/s10854-020-04013-2.Suche in Google Scholar
23. Sivakumar, A.; Suresh, S.; Balachandar, S.; Thirupathy, J.; Kalyana Sundar, J.; Martin Britto Dhas, S. A. Opt. Laser Technol. 2019, 111, 284–289; https://doi.org/10.1016/j.optlastec.2018.10.001.Suche in Google Scholar
24. Sivakumar, A.; Suresh, S.; Anto Pradeep, J.; Balachandar, S.; Martin Britto Dhas, S. A. J. Electron. Mater. 2018, 47, 4831–4839; https://doi.org/10.1007/s11664-018-6362-y.Suche in Google Scholar
25. Sivakumar, A.; Reena Devi, S.; Thirupathy, J.; Mohan Kumar, R.; Martin Britto Dhas, S. A. J. Electron. Mater. 2019, 48, 7216–7225; https://doi.org/10.1007/s11664-019-07510-1.Suche in Google Scholar
26. Sivakumar, A.; Saranrar, A.; Sahaya Jude Dhas, S.; Martin Britto Dhas, S. A. Mater. Res. Express 2019, 6, 046205; https://doi.org/10.1088/2053-1591/aafb47.Suche in Google Scholar
27. Sivakumar, A.; Saranraj, A.; Sahaya Jude Dhas, S.; Jose, M.; Martin Britto Dhas, S. A. Opt. Eng. 2019, 58 (7), 077104.Suche in Google Scholar
28. Sivakumar, A.; Saranraj, A.; Sahaya Jude Dhas, S.; Sivaprakash, P.; Arumugam, S.; Martin Britto Dhas, S. A. Spectrochim. Acta, Part A 2020, 242, 118725; https://doi.org/10.1016/j.saa.2020.118725.Suche in Google Scholar PubMed
29. Sivakumar, A., Sahaya Jude Dhas, S., Thirupathy, J., Sivaprakash, P., Anitha, K., Suresh Kumar, R., Arumugam, S., Martin Britto Dhas, S. A. J. Mater. Sci.: Mater. Electron. 2022, 33(14), 10842–10850; https://doi.org/10.1007/s10854-022-08065-4.Suche in Google Scholar
30. Sivakumar, A.; Saranraj, A.; Sahaya Jude Dhas, S.; Almansour, A. I.; Suresh Kumar, R.; Arumugam, N.; Perumal, K.; Martin Britto Dhas, S. A. J. Phys. Chem. C 2021, 125 (45), 25217–25226; https://doi.org/10.1021/acs.jpcc.1c07015.Suche in Google Scholar
31. Chen, P.-Y.; Zhang, L.; Zhu, S.-G.; Cheng, G.-B. Crystals 2015, 5, 346–354; https://doi.org/10.3390/cryst5030346.Suche in Google Scholar
32. Manonmani, M.; Balakrishnan, C.; Rafi Ahamed, S.; Vinitha, G.; Meenakshisundaram, S. P.; Sockalingam, R. M. J. Mol. Struct. 2019, 1190, 1–10; https://doi.org/10.1016/j.molstruc.2019.04.010.Suche in Google Scholar
33. Kudo, Y.; Takahashi, Y.; Katsuta, S. Distribution of Picric Acid into Various Diluents. J. Chem. 2013, 4, 869506.10.1155/2013/869506Suche in Google Scholar
34. Likhitha, U.; Narayana, B.; Sarojini, B. K.; Lobo, A. G.; Sharma, G.; Pathania, S.; Kant, R. J. Mol. Struct. 2019, 1195, 827–838; https://doi.org/10.1016/j.molstruc.2019.06.037.Suche in Google Scholar
35. Amudha, M.; Madhavan, J.; Praveen Kumar, P. Studies on the Growth and Characterization of Benzimidazolium Picrate Single Crystals. J. Opt. 2017, 46, 382–390; https://doi.org/10.1007/s12596-016-0381-y.Suche in Google Scholar
36. Sivakumar, A., Balachandar, S., Martin Britto Dhas, S. A. Hum. Factors Mech. Eng. Def. Saf. 2020, 4(3), 3–9; https://doi.org/10.1007/s41314-019-0033-5.Suche in Google Scholar
37. Sivakumar, A.; Shailaja, P.; Nandhini, M.; Sahaya Jude Dhas, S.; Suresh Kumar, R.; Almansour, A. I.; Arumugam, N.; Chakraborty, S.; Martin Britto Dhas, S. A. Ceram. Int. 2022, 48, 8457–8465; https://doi.org/10.1016/j.ceramint.2021.12.055.Suche in Google Scholar
38. Srikrishnan, T.; Soriano-Garcia, M.; Parthasarathy, R. Z. Kristallogr. 1980, 151, 317–323.10.1524/zkri.1980.151.3-4.317Suche in Google Scholar
39. Wang, K.; Duan, D.; Wang, R.; Lin, A.; Cui, Q.; Liu, B.; Cui, T.; Zou, B.; Zhang, X.; Hu, J.; Zou, G.; Mao, H. K. Langmuir 2009, 25, 4787–4791; https://doi.org/10.1021/la804034y.Suche in Google Scholar PubMed
40. Giordano, N.; Beavers, C. M.; Kamenev, K. V.; Marshall, W. G.; Moggach, S. A.; Patterson, S. D.; Teat, S. J.; Warren, J. E.; Peter, A.; Parsons, S. CrystEngComm 2019, 21, 4444; https://doi.org/10.1039/c9ce00388f.Suche in Google Scholar
41. Sivakumar, A.; Saranraj, A.; Sahaya Jude Dhas, S.; Showrilu, K.; Martin Britto Dhas, S. A. Z. Kristallogr. 2021, 236, 1–10.Suche in Google Scholar
42. Sivakumar, A.; Sahaya Jude Dhas, S.; Balachandar, S.; Martin Britto Dhas, S. A. Crystal. J. Elect. Mater 2019, 48, 7868–7873.10.1007/s11664-019-07605-9Suche in Google Scholar
43. Karthikeyan, K. V.; Anandhi, S.; Ramkumar, V.; Shyju, T. S.; Suriakarthick, R. Mater. Res. Express 2019, 6, 075105; https://doi.org/10.1088/2053-1591/ab1772.Suche in Google Scholar
44. Hasmuddin, M.; Abdullah, M. M.; Singh, P.; Shkir, M.; Vijayan, N.; Wahab, M. A. Opt. Laser Technol. 2015, 74, 53–59; https://doi.org/10.1016/j.optlastec.2015.05.013.Suche in Google Scholar
45. Thirupathy, J.; Sahaya Jude Dhas, S.; Jose, M.; Balachandar, S.; Martin Britto Dhas, S. A. Cryst. Res. Technol. 2018, 53, 1700267.Suche in Google Scholar
46. Rajesh Kannan, U.; Narayanasamy, G.; Subramanian, S.; Selvarajan, P. IJRAR 2018, 5, 1–9.10.21839/jaar.2018.v3i1.124Suche in Google Scholar
47. Srivastava, K. K.; Shubha, S.; Md Tanweer Alam, R. Der. Pharma. Chem. 2017, 9, 64–75.Suche in Google Scholar
48. Sivakumar, A.; Sahaya Jude Dhas, S.; Dai, L.; Sivaprakash, P.; Suresh Kumar, R.; Almansour, A. I.; Arumugam, S.; Kim, I.; Martin Britto Dhas, S. A. J. Mol. Struct. 2023, 1292, 136139; https://doi.org/10.1016/j.molstruc.2023.136139.Suche in Google Scholar
49. Aswathappa, S.; Dai, L.; Jude Dhas Sathiyadhas, S.; Martin Britto Dhas, S. A.; Thangavel, V.; Vijayakumar, V. N.; Suresh Kumar, R.; Almansour, A. I. J. Mol. Struct. 2024, 1301, 137348; https://doi.org/10.1016/j.molstruc.2023.137348.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Adsorptive removal of cadmium from electroplating wastewater using hybrid composite of thiol-grafted seed gum of Tamarindus indica and Teff hay biocarbon
- Unusual behavior in thermodynamical properties of chitosan-lanthanide oxide composites: competition between the size and mass
- Exploring structural and optical properties of shock wave-loaded polycrystalline picric acid: implications for molecular engineering applications
- Bi2Se3/ZnSe heterojunction on flexible Mo metal foil for photo electrolysis water splitting application
- Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment
- Influence of yttrium doping on the photocatalytic behaviour of lanthanum titanate: a material for water treatment
- Bioresin based hybrid green composite preparation using Holoptelea integrifolia fibers reinforced by Ziziphus jujuba seed particles: a fuzzy logic assisted optimization of mechanical behaviour
- Tamm plasmon-induced impressive optical nonlinearity of silver@graphite core–shell nanostructures
- Reversible photoluminescence shift in imidazolium l-tartrate crystal triggered by acoustic shock waves
- Sol–gel synthesized lithium–cobalt co-doped titanium (IV) oxide nanocomposite as an efficient photocatalyst for environmental remediation
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Adsorptive removal of cadmium from electroplating wastewater using hybrid composite of thiol-grafted seed gum of Tamarindus indica and Teff hay biocarbon
- Unusual behavior in thermodynamical properties of chitosan-lanthanide oxide composites: competition between the size and mass
- Exploring structural and optical properties of shock wave-loaded polycrystalline picric acid: implications for molecular engineering applications
- Bi2Se3/ZnSe heterojunction on flexible Mo metal foil for photo electrolysis water splitting application
- Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment
- Influence of yttrium doping on the photocatalytic behaviour of lanthanum titanate: a material for water treatment
- Bioresin based hybrid green composite preparation using Holoptelea integrifolia fibers reinforced by Ziziphus jujuba seed particles: a fuzzy logic assisted optimization of mechanical behaviour
- Tamm plasmon-induced impressive optical nonlinearity of silver@graphite core–shell nanostructures
- Reversible photoluminescence shift in imidazolium l-tartrate crystal triggered by acoustic shock waves
- Sol–gel synthesized lithium–cobalt co-doped titanium (IV) oxide nanocomposite as an efficient photocatalyst for environmental remediation