Startseite Exploring structural and optical properties of shock wave-loaded polycrystalline picric acid: implications for molecular engineering applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exploring structural and optical properties of shock wave-loaded polycrystalline picric acid: implications for molecular engineering applications

  • Muthuvel Vijayan ORCID logo , Sivakumar Aswathppa ORCID logo , Raju Suresh Kumar , Arul Haribabu ORCID logo und Martin Britto Dhas Sathiyadhas Amalapushpam ORCID logo EMAIL logo
Veröffentlicht/Copyright: 13. Juni 2024

Abstract

The shock wave impact on hydrogen-bonded organic materials’ structural properties and their responses with respect to their associated functional properties is one of the most prevalent research topics because of the possible emergence of unusual functional properties. Presently, we intend to examine the structural response of the poly-crystalline picric acid samples under shocked conditions. The crystallographic structural responses and the linear optical properties of the test samples have been examined by powder XRD analysis, ultra-violet diffused reflectance spectroscopy (UV-DRS) and Raman spectroscopy, respectively. Under shocked conditions, a considerable modification in the diffraction peak positions and their intensity changes could be witnessed. Notably, linear optical transmittance profiles show remarkable changes according to the number of applied shock pulses, such that the 150-shocked sample has the highest optical transmittance of 53.9 % at 350 nm, whereas the control sample has an optical transmittance of 6.6 %. The Raman spectrum shows the vibrational groups of material that are stable in shocked conditions with similar intensity changes. Based on the obtained XRD, UV-DRS and Raman results, shock wave-induced picric acid samples have remarkably improved characteristics of optical transmittance, which is highly favorable for non-linear optical applications.


Corresponding author: Sathiyadhas Amalapushpam Martin Britto Dhas, Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Center, Sacred Heart College, Tirupattur 635 601, Tamil Nadu, India, E-mail:
Muthuvel Vijayan and Sivakumar Aswathppa equally contributed to the work.

Acknowledgment

The authors thank the Abraham Panampara Research Fellowship (APRF), Sacred Heart College, Tirupattur, Tamilnadu, India.

  1. Research ethics: The study was performed in accordance with the Declaration under the terms of relevant local legislation.

  2. Author contributions: All authors have accepted responsibility for the entire content of the manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest regarding the publication of this paper.

  4. Research funding: This research work was supported by the Researchers Supporting Project number (RSP2024R142), King Saud University, Riyadh, Saudi Arabia.

  5. Data availability: The data can be obtained on request from the corresponding author.

References

1. Winey, J. M.; Zimmerman, K.; Dreger, Z. A.; Gupta, Y. M. J. Phys. Chem. A 2020, 124 (32), 6521–6527; https://doi.org/10.1021/acs.jpca.0c04862.Suche in Google Scholar PubMed

2. Zhou, X.; Miao, Y.-R.; Shaw, W. L.; Suslick, K. S.; Dlott, D. D. J. Am. Chem. Soc. 2019, 141, 2220–2223; https://doi.org/10.1021/jacs.8b12905.Suche in Google Scholar PubMed

3. Leiserowitz, L.; Schmidt, g. M. J.; Shamgar, A. J. Phys. Chem. Solids 1966, 27, 1453–1457; https://doi.org/10.1016/0022-3697(66)90140-5.Suche in Google Scholar

4. Renganathan, P.; Gupta, Y. M. J. Appl. Phys. 2019, 126, 115902; https://doi.org/10.1063/1.5116822.Suche in Google Scholar

5. Vasu, K.; Matte, H. S. S. R.; Shirodkar, S. N.; Jayaram, V.; Reddy, K. P. J.; Waghmare, U. V.; Rao, C. N. R. Chem. Phys. Lett. 2013, 582, 105–109; https://doi.org/10.1016/j.cplett.2013.07.044.Suche in Google Scholar

6. Kalaiarasi, S.; Sivakumar, A.; Martin Britto Dhas, S. A.; Jose, M. Mater. Lett. 2018, 219, 72–75; https://doi.org/10.1016/j.matlet.2018.02.064.Suche in Google Scholar

7. Mashimo, T.; Uchino, M.; Nakamura, A.; Kobayashi, T.; Takasawa, E.; Sekine, T.; Noguchi, Y.; Hikosaka, H.; Fukuoka, K.; Syono, Y. J. Appl. Phys. 1999, 86, 6710; https://doi.org/10.1063/1.371749.Suche in Google Scholar

8. Tang, Z. P.; Gupta, Y. M. J. Appl. Phys. 1997, 81, 7203; https://doi.org/10.1063/1.365319.Suche in Google Scholar

9. Larson, D. B. J. Appl. Phys. 1967, 38, 1541; https://doi.org/10.1063/1.1709720.Suche in Google Scholar

10. Kadhu, K.; Germann, T. C.; Lomdahl, P. S. Brad Lee Holian 2002, 296, 1681–1684.10.1126/science.1070375Suche in Google Scholar PubMed

11. Gust, W. H. Phys. Rev. B 1980, 22, 4744; https://doi.org/10.1103/physrevb.22.4744.Suche in Google Scholar

12. Yu, Y.; Tan, Ye; Dai, C.; Li, X.; Li, Y.; Wu, Q.; Tan, H. Appl. Phys. Lett. 2014, 105, 201910; https://doi.org/10.1063/1.4902374.Suche in Google Scholar

13. Mashimo, T.; Nakamura, A.; Kodama, M.; Kusaba, K.; Fukuoka, K.; Syono, Y. J. Appl. Phys. 1995, 77, 5060; https://doi.org/10.1063/1.359314.Suche in Google Scholar

14. Hu, J.; Zhou, X.; Tan, H.; Li, J.; Dai, C. Appl. Phys. Lett. 2008, 92, 111905; https://doi.org/10.1063/1.2898891.Suche in Google Scholar

15. Sivakumar, A.; Sahaya Jude Dhas, S.; Sivaprakash, P.; Almansour, A. I.; Suresh Kumar, R.; Arumugam, N.; Arumugam, S.; Martin Britto Dhas, S. A. New J. Chem. 2021, 45, 16529; https://doi.org/10.1039/d1nj02974f.Suche in Google Scholar

16. Sivakumar, A.; Reena Devi, S.; Sahaya Jude Dhas, S.; Mohan Kumar, R.; Kamala Bharathi, K.; Martin Britto Dhas, S. A. Cryst. Growth Des. 2020, 20 (11), 7111–7119; https://doi.org/10.1021/acs.cgd.0c00214.Suche in Google Scholar

17. Sivakumar, A.; Shailaja, P.; Sahaya Jude Dhas, S.; Sivaprakash, P.; Almansour, A. I.; Suresh Kumar, R.; Arumugam, N.; Arumugam, S.; Chakraborty, S.; Martin Britto Dhas, S. A. Cryst. Growth Des. 2021, 21 (9), 5050–5057; https://doi.org/10.1021/acs.cgd.1c00476.Suche in Google Scholar

18. Sivakumar, A.; Sahaya Jude Dhas, S.; Almansour, A. I.; Suresh Kumar, R.; Arumugam, N.; Martin Britto Dhas, S. A. CrystEngComm 2021, 23, 7044.10.1039/D1CE01118ASuche in Google Scholar

19. Sivakumar, A.; Sahaya Jude Dhas, S.; Chakraborty, S.; Suresh Kumar, R.; Almansour, A. I.; Arumugam, N.; Martin Britto Dhas, S. A. J. Phys. Chem. C 2022, 126, 3194–3201.10.1021/acs.jpcc.1c09411Suche in Google Scholar

20. Senthil Pandian, M.; Charoen In, U.; Ramasamy, P.; Manyum, P.; Lenin, M.; Balamurugan, N. J. Cryst. Growth 2010, 312, 397–401; https://doi.org/10.1016/j.jcrysgro.2009.10.060.Suche in Google Scholar

21. Sivakumar, A.; Martin Britto Dhas, S. A. J. Appl. Cryst. 2019, 52, 1016–1021; https://doi.org/10.1107/s1600576719009488.Suche in Google Scholar

22. Thirupathy, J.; Sahaya Jude Dhas, S.; Jose, M.; Martin Britto Dhas, S. A. J. Mater. Sci.: Mater. Electron. 2020, 31, 14531–14536; https://doi.org/10.1007/s10854-020-04013-2.Suche in Google Scholar

23. Sivakumar, A.; Suresh, S.; Balachandar, S.; Thirupathy, J.; Kalyana Sundar, J.; Martin Britto Dhas, S. A. Opt. Laser Technol. 2019, 111, 284–289; https://doi.org/10.1016/j.optlastec.2018.10.001.Suche in Google Scholar

24. Sivakumar, A.; Suresh, S.; Anto Pradeep, J.; Balachandar, S.; Martin Britto Dhas, S. A. J. Electron. Mater. 2018, 47, 4831–4839; https://doi.org/10.1007/s11664-018-6362-y.Suche in Google Scholar

25. Sivakumar, A.; Reena Devi, S.; Thirupathy, J.; Mohan Kumar, R.; Martin Britto Dhas, S. A. J. Electron. Mater. 2019, 48, 7216–7225; https://doi.org/10.1007/s11664-019-07510-1.Suche in Google Scholar

26. Sivakumar, A.; Saranrar, A.; Sahaya Jude Dhas, S.; Martin Britto Dhas, S. A. Mater. Res. Express 2019, 6, 046205; https://doi.org/10.1088/2053-1591/aafb47.Suche in Google Scholar

27. Sivakumar, A.; Saranraj, A.; Sahaya Jude Dhas, S.; Jose, M.; Martin Britto Dhas, S. A. Opt. Eng. 2019, 58 (7), 077104.Suche in Google Scholar

28. Sivakumar, A.; Saranraj, A.; Sahaya Jude Dhas, S.; Sivaprakash, P.; Arumugam, S.; Martin Britto Dhas, S. A. Spectrochim. Acta, Part A 2020, 242, 118725; https://doi.org/10.1016/j.saa.2020.118725.Suche in Google Scholar PubMed

29. Sivakumar, A., Sahaya Jude Dhas, S., Thirupathy, J., Sivaprakash, P., Anitha, K., Suresh Kumar, R., Arumugam, S., Martin Britto Dhas, S. A. J. Mater. Sci.: Mater. Electron. 2022, 33(14), 10842–10850; https://doi.org/10.1007/s10854-022-08065-4.Suche in Google Scholar

30. Sivakumar, A.; Saranraj, A.; Sahaya Jude Dhas, S.; Almansour, A. I.; Suresh Kumar, R.; Arumugam, N.; Perumal, K.; Martin Britto Dhas, S. A. J. Phys. Chem. C 2021, 125 (45), 25217–25226; https://doi.org/10.1021/acs.jpcc.1c07015.Suche in Google Scholar

31. Chen, P.-Y.; Zhang, L.; Zhu, S.-G.; Cheng, G.-B. Crystals 2015, 5, 346–354; https://doi.org/10.3390/cryst5030346.Suche in Google Scholar

32. Manonmani, M.; Balakrishnan, C.; Rafi Ahamed, S.; Vinitha, G.; Meenakshisundaram, S. P.; Sockalingam, R. M. J. Mol. Struct. 2019, 1190, 1–10; https://doi.org/10.1016/j.molstruc.2019.04.010.Suche in Google Scholar

33. Kudo, Y.; Takahashi, Y.; Katsuta, S. Distribution of Picric Acid into Various Diluents. J. Chem. 2013, 4, 869506.10.1155/2013/869506Suche in Google Scholar

34. Likhitha, U.; Narayana, B.; Sarojini, B. K.; Lobo, A. G.; Sharma, G.; Pathania, S.; Kant, R. J. Mol. Struct. 2019, 1195, 827–838; https://doi.org/10.1016/j.molstruc.2019.06.037.Suche in Google Scholar

35. Amudha, M.; Madhavan, J.; Praveen Kumar, P. Studies on the Growth and Characterization of Benzimidazolium Picrate Single Crystals. J. Opt. 2017, 46, 382–390; https://doi.org/10.1007/s12596-016-0381-y.Suche in Google Scholar

36. Sivakumar, A., Balachandar, S., Martin Britto Dhas, S. A. Hum. Factors Mech. Eng. Def. Saf. 2020, 4(3), 3–9; https://doi.org/10.1007/s41314-019-0033-5.Suche in Google Scholar

37. Sivakumar, A.; Shailaja, P.; Nandhini, M.; Sahaya Jude Dhas, S.; Suresh Kumar, R.; Almansour, A. I.; Arumugam, N.; Chakraborty, S.; Martin Britto Dhas, S. A. Ceram. Int. 2022, 48, 8457–8465; https://doi.org/10.1016/j.ceramint.2021.12.055.Suche in Google Scholar

38. Srikrishnan, T.; Soriano-Garcia, M.; Parthasarathy, R. Z. Kristallogr. 1980, 151, 317–323.10.1524/zkri.1980.151.3-4.317Suche in Google Scholar

39. Wang, K.; Duan, D.; Wang, R.; Lin, A.; Cui, Q.; Liu, B.; Cui, T.; Zou, B.; Zhang, X.; Hu, J.; Zou, G.; Mao, H. K. Langmuir 2009, 25, 4787–4791; https://doi.org/10.1021/la804034y.Suche in Google Scholar PubMed

40. Giordano, N.; Beavers, C. M.; Kamenev, K. V.; Marshall, W. G.; Moggach, S. A.; Patterson, S. D.; Teat, S. J.; Warren, J. E.; Peter, A.; Parsons, S. CrystEngComm 2019, 21, 4444; https://doi.org/10.1039/c9ce00388f.Suche in Google Scholar

41. Sivakumar, A.; Saranraj, A.; Sahaya Jude Dhas, S.; Showrilu, K.; Martin Britto Dhas, S. A. Z. Kristallogr. 2021, 236, 1–10.Suche in Google Scholar

42. Sivakumar, A.; Sahaya Jude Dhas, S.; Balachandar, S.; Martin Britto Dhas, S. A. Crystal. J. Elect. Mater 2019, 48, 7868–7873.10.1007/s11664-019-07605-9Suche in Google Scholar

43. Karthikeyan, K. V.; Anandhi, S.; Ramkumar, V.; Shyju, T. S.; Suriakarthick, R. Mater. Res. Express 2019, 6, 075105; https://doi.org/10.1088/2053-1591/ab1772.Suche in Google Scholar

44. Hasmuddin, M.; Abdullah, M. M.; Singh, P.; Shkir, M.; Vijayan, N.; Wahab, M. A. Opt. Laser Technol. 2015, 74, 53–59; https://doi.org/10.1016/j.optlastec.2015.05.013.Suche in Google Scholar

45. Thirupathy, J.; Sahaya Jude Dhas, S.; Jose, M.; Balachandar, S.; Martin Britto Dhas, S. A. Cryst. Res. Technol. 2018, 53, 1700267.Suche in Google Scholar

46. Rajesh Kannan, U.; Narayanasamy, G.; Subramanian, S.; Selvarajan, P. IJRAR 2018, 5, 1–9.10.21839/jaar.2018.v3i1.124Suche in Google Scholar

47. Srivastava, K. K.; Shubha, S.; Md Tanweer Alam, R. Der. Pharma. Chem. 2017, 9, 64–75.Suche in Google Scholar

48. Sivakumar, A.; Sahaya Jude Dhas, S.; Dai, L.; Sivaprakash, P.; Suresh Kumar, R.; Almansour, A. I.; Arumugam, S.; Kim, I.; Martin Britto Dhas, S. A. J. Mol. Struct. 2023, 1292, 136139; https://doi.org/10.1016/j.molstruc.2023.136139.Suche in Google Scholar

49. Aswathappa, S.; Dai, L.; Jude Dhas Sathiyadhas, S.; Martin Britto Dhas, S. A.; Thangavel, V.; Vijayakumar, V. N.; Suresh Kumar, R.; Almansour, A. I. J. Mol. Struct. 2024, 1301, 137348; https://doi.org/10.1016/j.molstruc.2023.137348.Suche in Google Scholar

Received: 2024-02-26
Accepted: 2024-05-28
Published Online: 2024-06-13
Published in Print: 2025-05-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0710/html
Button zum nach oben scrollen