Influence of doping concentrations on the structural, optical, and magnetic properties of Ba-doped LaCoO3 nanostructure
-
Jhelai Sahadevan
, Ikhyun Kim
Abstract
In this article we report the structural, morphology, vibrational, optical and magnetic properties of Ba x La1−xCoO3 (x = 0, 0.05, and 0.1) (LBCO) samples. The X-ray diffraction shows that samples are in single rhombohedral phase. The Raman signals of LCO were quite small in comparison to LBCO, which exhibited a Raman peak above 675 cm−1. The band seen with a wavenumber of 484 cm−1 corresponds to the vibrational modes of Eg bending and Ba–O stretching. UV–DRS and photoluminescence spectra indicated broad absorption over the ultraviolet, visible, and near-infrared spectrums. Surface morphology and EDAX spectra corroborated the materials homogeneous size distribution and homogenous microstructure, with Ba indicating a more stable structure. XPS was used to study chemical states of LBCO and found Co (2p), La (3d), O (1s), and C (1s) elements in perovskite compounds. A peak beneath 300 eV indicated adventitious carbon on surface materials. XPS survey spectrum elements La, Ba, Co, and O had their own binding energies. The magnetization-field dependency of LBCO at 300 K showed that Ba insertion into the LCO switched it from paramagnetic to weak ferromagnetic. Ba considerably decreased magnetic saturation and coercivity, influencing magneto-crystallites’ anisotropy and coercive field.
Funding source: Researchers Supporting Project number (RSP2024R70), King Saud University, Riyadh, Saudi Arabia
Award Identifier / Grant number: Project Number (RSP2024R70)
Acknowledgments
The authors express their sincere appreciation to the Researchers Supporting Project Number (RSP2024R70), King Saud University, Riyadh, Saudi Arabia.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: Researchers Supporting Project number (RSP2024R70), King Saud University, Riyadh, Saudi Arabia.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Koehler, W. C., Wollan, E. O. J. Phys. Chem. Solids 1957, 2, 100–106. https://doi.org/10.1016/0022–3697(57)90095–1.10.1016/0022-3697(57)90095-1Suche in Google Scholar
2. Harry Yakvl, B. L. Acta Crystallogr. 1955, 8, 394–398. https://doi.org/10.1107/S0365110X55001291.Suche in Google Scholar
3. Señarís-Rodríguez, M. A., Goodenough, J. B. J. Solid State Chem. 1995, 116, 224–231. https://doi.org/10.1006/jssc.1995.1207.Suche in Google Scholar
4. Song, Y., Sun, Q., Lu, Y., Liu, X., Wang, F. J. Alloys Compd. 2012, 536, 150–154. https://doi.org/10.1016/j.jallcom.2012.05.001.Suche in Google Scholar
5. Farhadi, S., Sepahvand, S. J. Alloys Compd. 2010, 489, 586–591. https://doi.org/10.1016/j.jallcom.2009.09.117.Suche in Google Scholar
6. Haas, O., Struis, R. P. W. J., McBreen, J. M. J. Solid State Chem. 2004, 177, 1000–1010. https://doi.org/10.1016/j.jssc.2003.10.004.Suche in Google Scholar
7. Shu, G. J., Wu, P. C., Chou, F. C. RSC Adv. 2020, 10, 43117–43128. https://doi.org/10.1039/d0ra09675j.Suche in Google Scholar PubMed PubMed Central
8. Phillipps, M. B., Sammes, N. M., Yamamoto, O. J. Mater. Sci. 1996, 31, 1689–1692. https://doi.org/10.1007/BF00372179.Suche in Google Scholar
9. Jhelai, S., Radhakrishnan, M., Padmanathan, N., Esakki Muthu, S., Sivaprakash, P., Kadiresan, M. Mater. Sci. Eng. B 2022, 284, 115875. https://doi.org/10.1016/J.MSEB.2022.115875.Suche in Google Scholar
10. Sahadevan, J., Sivaprakash, P., Esakki Muthu, S., Kim, I., Padmanathan, N., Eswaramoorthi, V. Int. J. Mol. Sci. 2023, 24, 10107. https://doi.org/10.3390/ijms241210107.Suche in Google Scholar PubMed PubMed Central
11. Tepech-Carrillo, L., Escobedo-Morales, A., Pérez-Centeno, A., Chigo-Anota, E., Sánchez-Ramírez, J. F., López-Apreza, E., Gutiérrez-Gutiérrez, J. J. Nanomater. 2016, 6917950, 1687–4110. https://doi.org/10.1155/2016/6917950.Suche in Google Scholar
12. Ansari, A. A., Adil, S. F., Alam, M., Ahmad, N., Assal, M. E., Labis, J. P., Alwarthan, A. Sci. Rep. 2020, 10, 1–13. https://doi.org/10.1038/s41598–020–71869–z.Suche in Google Scholar
13. Lu, Y., Dai, Q., Wang, X. Catal. Commun. 2014, 54, 114–117; https://doi.org/10.1016/J.CATCOM.2014.05.018.Suche in Google Scholar
14. ben Hammouda, S., Zhao, F., Safaei, Z., Babu, I., Ramasamy, D. L., Sillanpää, M. Appl. Catal. B Environ. 2017, 218, 119–136. https://doi.org/10.1016/J.APCATB.2017.06.047.Suche in Google Scholar
15. Zhu, H., Yang, D., Yang, H., Zhu, L., Li, D., Jin, D., Yao, K. J. Nanopart. Res. 2008, 10, 307–312. https://doi.org/10.1007/s11051–007–9250–6.10.1007/s11051-007-9250-6Suche in Google Scholar
16. Mu, Q., Wang, Y. J. Alloys Compd. 2011, 509, 396–401. https://doi.org/10.1016/j.jallcom.2010.09.041.Suche in Google Scholar
17. Ansari, A. A., Adil, S. F., Alam, M., Ahmad, N., Assal, M. E., Labis, J. P., Alwarthan, A. Sci. Rep. 2020, 10, 15012. https://doi.org/10.1038/s41598–020–71869–z.10.1038/s41598-020-71869-zSuche in Google Scholar PubMed PubMed Central
18. Ansari, A. A., Labis, J., Alam, M., Ramay, S. M., Ahmad, N., Mahmood, A. J. Electroceram. 2016, 36, 150–157. https://doi.org/10.1007/s10832–016–0018–1.10.1007/s10832-016-0018-1Suche in Google Scholar
19. Ansari, A. A., Labis, J., Alam, M., Ramay, S. M., Ahmad, N., Mahmood, A. Phase Transitions 2016, 89, 261–272. https://doi.org/10.1080/01411594.2015.1116532.Suche in Google Scholar
20. Popa, M., Frantti, J., Kakihana, M. Solid State Ionics 2002, 154–155, 135–141. https://doi.org/10.1016/S0167–2738(02)00421–6.10.1016/S0167-2738(02)00421-6Suche in Google Scholar
21. Iliev, M. N., Abrashev, M. V. J. Raman Spectrosc. 2001, 32, 805–811. https://doi.org/10.1002/jrs.770.Suche in Google Scholar
22. Orlovskaya, N., Steinmetz, D., Yarmolenko, S., Pai, D., Sankar, J., Goodenough, J. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 014122; https://doi.org/10.1103/PhysRevB.72.014122.Suche in Google Scholar
23. Thirumalairajan, S., Girija, K., Hebalkar, N. Y., Mangalaraj, D., Viswanathan, C., Ponpandian, N. RSC Adv. 2013, 3, 7549–7561. https://doi.org/10.1039/c3ra00006k.Suche in Google Scholar
24. Ling, F., Anthony, O. C., Xiong, Q., Luo, M., Pan, X., Jia, L., Huang, J., Sun, D., Li, Q. Int. J. Hydrogen Energy 2016, 41, 6115–6122. https://doi.org/10.1016/j.ijhydene.2015.10.036.Suche in Google Scholar
25. Serantes, D., Baldomir, D. Nanomaterials 2021, 11, 2786. https://doi.org/10.3390/NANO11112786.Suche in Google Scholar
26. Haber, J., Ungier, L. J. Electron Spectrosc. Relat. Phenom. 1977, 12, 305–312. https://doi.org/10.1016/0368–2048(77)85081–0.10.1016/0368-2048(77)85081-0Suche in Google Scholar
27. Mcintyre, N. S., Johnston, D. D., Coatsworth, L. L., Davidson, R. D., Brown, J. R. 1990, 15, 265–272. https://doi.org/10.1002/sia.740150406.Suche in Google Scholar
28. Wang, H., Xu, W., Richins, S., Liaw, K., Yan, L., Zhou, M., Luo, H. Electrochim. Acta 2019, 296, 945–953. https://doi.org/10.1016/j.electacta.2018.11.075.Suche in Google Scholar
29. Seim, H., Nieminen, M., Niinistö, L., Fjellvåg, H., Johansson, L. S. Appl. Surf. Sci. 1997, 112, 243–250. https://doi.org/10.1016/S0169–4332(96)01001–X.10.1016/S0169-4332(96)01001-XSuche in Google Scholar
30. Ramana, C. V., Vemuri, R. S., Kaichev, V. V., Kochubey, V. A., Saraev, A. A., Atuchin, V. V. ACS Appl. Mater. Interfaces 2011, 3, 4370–4373. https://doi.org/10.1021/am201021m.Suche in Google Scholar PubMed
31. Jiang, X., Dong, Y., Zhang, Z., Li, J., Qian, J., Gao, D. J. Alloys Compd. 2021, 878, 160433. https://doi.org/10.1016/J.JALLCOM.2021.160433.Suche in Google Scholar
32. Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Maragno, C., Tondello, E. Surf. Sci. Spectra 2003, 10, 143–149. https://doi.org/10.1116/11.20040303.Suche in Google Scholar
33. Jhelai, S., Sanjay, R., Esakki Muthu, S., Kim, I., Vivekananthan, V., Ansar, S., Sivaprakash, P. Mater. Sci. Eng. B 2023, 296, 116669. https://doi.org/10.1016/j.mseb.2023.116669.Suche in Google Scholar
34. Craciun, V., Singh, R. K. Appl. Phys. Lett. 2000, 76, 1932–1934. https://doi.org/10.1063/1.126216.Suche in Google Scholar
35. Fujisaki, Y., Shimamoto, Y., Matsui, Y. Jpn. J. Appl. Phys. 1999, 38, L52. https://doi.org/10.1143/JJAP.38.L52.Suche in Google Scholar
36. Miot, C., Proustz, C., Husson, E., Erre, R., Blondiaux, G., Beny, J. M., Coutures, J. P. Mater. Sci. Eng. B 1997, 45, 17–24. https://doi.org/10.1016/S0921–5107(96)02013–2.10.1016/S0921-5107(96)02013-2Suche in Google Scholar
37. Miot, C., Husson, E., Proust, C., Erre, R., Coutures, J. P. J. Mater. Res. 1997, 12, 2388–2392. https://doi.org/10.1557/JMR.1997.0316.Suche in Google Scholar
38. Droubay, T. C., Kong, L., Chambers, S. A., Hess, W. P. Surf. Sci. 2015, 632, 201–206. https://doi.org/10.1016/j.susc.2014.07.010.Suche in Google Scholar
39. Branford, W., Green, M. A., Neumann, D. A. Chem. Mater. 2002, 14, 1649–1656. https://doi.org/10.1021/cm010857a.Suche in Google Scholar
40. Thummer, K. P., Chhantbar, M. C., Modi, K. B., Joshi, H. H. Indian J. Phys. 2005, 79, 41–45.Suche in Google Scholar
41. Liang, H., Hong, Y., Zhu, C., Li, S., Chen, Y., Liu, Z., Ye, D. Catal. Today 2013, 201, 98–102. https://doi.org/10.1016/J.CATTOD.2012.04.036.Suche in Google Scholar
42. Smyrnioti, M., Ioannides, T. Synthesis of cobalt-based nanomaterials from organic precursors. In Cobalt; InTech: UK, 2017.10.5772/intechopen.70947Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Preparation of fluorinated zirconia doped with tin oxide nanocomposites for photocatalytic degradation of organic dyes in contaminated water bodies
- A study of the effect of cerium ion doping concentration on the structural, electrical, and thermoelectric properties of CaMnO3 nanoparticles
- Biosensors and its diverse applications in healthcare systems
- Estimation on magnetic entropy change and specific heat capacity through phoenomological model for Heusler melt spun ribbon of Ni47Mn40−xSi x In3 (x = 1, 2 and 3)
- Probing the structural and electronic properties of MAX phases and their corresponding MXenes using first-principles calculations
- Boosted electrochemical properties of Co3O4 nanoflakes by the addition of a redox-additive electrolyte
- Evaluation of magnetic and electrochemical performance of copper oxide nanoparticles using Myristica fragrans (mace) extract
- Incredible electrochemical performance of ZnWO4/PANI as a favorable electrode material for supercapacitor
- Influence of doping concentrations on the structural, optical, and magnetic properties of Ba-doped LaCoO3 nanostructure
- Green engineering of NiO nanoparticles decorated with Arachis hypogaea shell extract for biomedical applications
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Preparation of fluorinated zirconia doped with tin oxide nanocomposites for photocatalytic degradation of organic dyes in contaminated water bodies
- A study of the effect of cerium ion doping concentration on the structural, electrical, and thermoelectric properties of CaMnO3 nanoparticles
- Biosensors and its diverse applications in healthcare systems
- Estimation on magnetic entropy change and specific heat capacity through phoenomological model for Heusler melt spun ribbon of Ni47Mn40−xSi x In3 (x = 1, 2 and 3)
- Probing the structural and electronic properties of MAX phases and their corresponding MXenes using first-principles calculations
- Boosted electrochemical properties of Co3O4 nanoflakes by the addition of a redox-additive electrolyte
- Evaluation of magnetic and electrochemical performance of copper oxide nanoparticles using Myristica fragrans (mace) extract
- Incredible electrochemical performance of ZnWO4/PANI as a favorable electrode material for supercapacitor
- Influence of doping concentrations on the structural, optical, and magnetic properties of Ba-doped LaCoO3 nanostructure
- Green engineering of NiO nanoparticles decorated with Arachis hypogaea shell extract for biomedical applications