Startseite A study of the effect of cerium ion doping concentration on the structural, electrical, and thermoelectric properties of CaMnO3 nanoparticles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A study of the effect of cerium ion doping concentration on the structural, electrical, and thermoelectric properties of CaMnO3 nanoparticles

  • Berbethmary Samimuthu EMAIL logo , Ramakrishnan Manoranjitham , Konganapuram S. Mohan , Nagaraj Backiyalakshmi und Mahadevan Muthukrishnan
Veröffentlicht/Copyright: 8. März 2024

Abstract

Universally, energy loss in the form of heat is predominant and this heat is irrecoverable waste heat that leads to global warming. Clean, green, eco-friendly, cost-effective, and renewable energy sources are the possible solutions for this energy crisis and global warming issues. Thermoelectric power generation is a promising technology by converting this irrecoverable waste heat directly into electricity without any greenhouse gas emission. Nanostructured CaMnO3 at various cerium concentrations have been successfully prepared by sol–gel hydrothermal method followed by annealing and sintering. Pure and doped samples were systematically characterized by DSC, powder XRD, RAMAN, SEM with EDAX and FTIR spectroscopy. Electrical and thermoelectrical measurements were carried out on the sintered pellets. The XRD analyses confirmed the formation of orthorhombic perovskite structure for all the samples and the average particle size lies in the range of 50–60 nm. FTIR analysis shows the presence of CaMnO3 nanoparticles without any impurities. The temperature dependence of physical properties was performed and analyzed between room temperature and 600 °C. Electrical resistivity strongly depends on the nature of substituent ions and negative values indicate that the electrons are major charge carriers. Large Seebeck coefficient value and high-power factor make Ca1−x Ce x MnO3 an efficient thermoelectric material for energy storage applications.


Corresponding author: Berbethmary Samimuthu, Department of Physics, K. Ramakrishnan College of Engineering (Autonomous), Tiruchirappalli 621112, Tamil Nadu, India, E-mail:

Acknowledgments

One of the authors (Dr. Berbethmary Samimuthu) would like to thank UGC-DAE Consortium for Scientific Research, Indore for providing the opportunity to use the research facilities at this center.

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Author contributions: All authors contributed to the conceptual study of this research article. Material preparation, data collection and analysis were performed by Dr. Berbethmary Samimuthu, Dr. Konganapuram S. Mohan, Ramakrishnan Manoranjitham, Nagaraj Backiyalakshmi, and Mahadevan Muthukrishnan. The first draft of the manuscript was written by Dr. Berbethmary Samimuthu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

  5. Data availability: Not applicable.

References

1. Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J. P., Caillat, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 2003, 48, 45; https://doi.org/10.1179/095066003225010182.Suche in Google Scholar

2. Snyder, G. J., Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114; https://doi.org/10.1038/nmat2090.Suche in Google Scholar PubMed

3. Terasaki, I., Sasago, Y., Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 1997, 56, R12685–R12687; https://doi.org/10.1103/physrevb.56.r12685.Suche in Google Scholar

4. Zhang, X. H., Li, J. C., Du, Y. L., Wang, F. N., Liu, H. Z., Zhu, Y. H., Liu, J., Su, W. B., Wang, C. L., Mei, L. M. Thermoelectric properties of a-site substituted lanthanide Ca0.75R 0.25MnO3. J. Alloy. Comp 2015, 634, 1–5; https://doi.org/10.1016/j.jallcom.2015.02.074.Suche in Google Scholar

5. Rowe, D. M., Ed. Thermoelectrics Handbook: Macro to Nano, 1st ed.; CRC Press: Boca Raton, FL, 2006; p. 1.Suche in Google Scholar

6. Takashiri, M., Miyazaki, K., Tanaka, S., Kurosaki, J., Nagai, D., Tsukamoto, H. Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films. J. Appl. Phys. 2008, 104, 084302; https://doi.org/10.1063/1.2990774.Suche in Google Scholar

7. Niu, J., Deng, J., Liu, W., Zhang, L., Wang, G., Dai, H., He, H., Zi, X. Nanosized perovskite-type oxides La1−xSrxMO3δ (M¼ Co, Mn; x¼ 0, 0.4) for the catalytic removal of ethyl acetate. Catal. Today 2007, 126, 420–429; https://doi.org/10.1016/j.cattod.2007.06.027.Suche in Google Scholar

8. Lan, J., Lin, Y.-H., Fang, H., Ao, M., Nan, C.-W., Liu, Y., Xu, S., Peters, M. High-temperature thermoelectric behaviors of fine-grained Gd-doped CaMnO3 ceramics. J. Am. Ceram. Soc. 2010, 93, 2121–2124; https://doi.org/10.1111/j.1551-2916.2010.03673.x.Suche in Google Scholar

9. Han, X., Hu, Y., Yang, J., Cheng, F., Chen, J. Porous perovskite CaMnO3 as an electro catalyst for rechargeable lio2 batteries. Chem. Commun. (J. Chem. Soc. Sect. D) 2014, 50, 1497; https://doi.org/10.1039/c3cc48207c.Suche in Google Scholar PubMed

10. Giang, H. T., Duy, H. T., Ngan, P. Q., Thai, G. H., Thu, D. T. A., Thu, D. T., Toan, N. N. Hydrocarbon gas sensing of nano-crystalline perovskite oxides LnFeO3 (Ln=La, Nd and Sm). Sens. Actuat. B: Chem. 2011, 158, 246–251; https://doi.org/10.1016/j.snb.2011.06.013.Suche in Google Scholar

11. Kosuga, A., Isse, Y., Wang, Y., Koumoto, K., Funahashi, R. High-temperature thermoelectric properties of Ca0.9- xSrxyb0.1MnO3- δ (0>x>0.2). J. Appl. Phys. 2009, 105, 093717; https://doi.org/10.1063/1.3125450.Suche in Google Scholar

12. Nakahara, J. F., Takeshita, T., Tschetter, M. J., Beaudry, B. J., Gshneider, J. K. A. Thermoelectric properties of lanthanum sulfide with Sm, Eu, and Yb additives. J. Appl. Phys. 1998, 63, 2331–2336.10.1063/1.341049Suche in Google Scholar

13. Seck, E. I., Doña-Rodríguez, J. M., Pulido Melián, E., Fernández-Rodríguez, C., González-Díaz, O. M., Portillo-Carrizo, D., Pérez-Peña, J. Comparative study of nanocrystalline titanium dioxide obtained through sol–gel and sol–gel–hydrothermal synthesis. J. Colloid Interface Sci. 2013, 400, 31–40; https://doi.org/10.1016/j.jcis.2013.03.019.Suche in Google Scholar PubMed

14. Vásquez, G. C., Maestre, D., Cremades, A., Ramírez-Castellanos, J., Magnano, E., Nappini, S., Karazhanov, S. Z. Understanding the effects of Cr doping in rutile TiO2 by DFT calculations and X-ray spectroscopy. Sci. Rep. 2018, 8; https://doi.org/10.1038/s41598-018-26728-3.Suche in Google Scholar PubMed PubMed Central

15. Noudem, J. G., Kenfaui, D., Quetel-Weben, S., Sanmathi, C. S., Retoux, R., Gomina, M. Spark plasma sintering of n-type thermoelectric Ca0.95Sm0.05MnO3. J. Am. Chem. Soc. 2011, 94, 2608–2612; https://doi.org/10.1111/j.1551-2916.2011.04465.x.Suche in Google Scholar

16. Ohta, H., Sugiura, K., Koumoto, K. Recent progress in oxide thermoelectric materials:p-type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem. 2008, 47, 8429–8436; https://doi.org/10.1021/ic800644x.Suche in Google Scholar PubMed

17. Silva, M. F., De Oliveira, L. A. S., Ciciliati, M. A., Lima, M. K., Ivashita, F. F., Fernandes de Oliveira, D. M., Hechenleitner, A. A. W., Pineda, E. A. G. The effects and role of polyvinyl pyrrolidone on the size and phase composition of iron oxide nanoparticles prepared by a modified sol-gel method. J. Nanomater. 2017, 7939727; https://doi.org/10.1155/2017/7939727.Suche in Google Scholar

18. Sun, H., He, J., Wang, J., Zhang, S.-Y., Liu, C., Sritharan, T., Mhaisalkar, S. G., Han, M.-Y., Wang, D., Chen, H. Investigating the multiple roles of polyvinyl pyrrolidone for A general methodology of oxide encapsulation. J. Am. Chem. Soc. 2013, 135, 9099–9110; https://doi.org/10.1021/ja4035335.Suche in Google Scholar PubMed

19. Satyala, N., Vashaee, D. The effect of crystallite size on thermoelectric properties of bulk nanostructured magnesium silicide (Mg2Si) compounds. Appl. Phys. Lett. 2012, 100, 073107; https://doi.org/10.1063/1.3684615.Suche in Google Scholar

20. Kanade, K. G., Baeg, J. O., Apte, S. K., Prakash, T. L., Kale, B. B. Synthesis and characterization of nanocrystallined zirconia by hydrothermal method. Mater. Res. Bull. 2008, 43, 723–729; https://doi.org/10.1016/j.materresbull.2007.03.025.Suche in Google Scholar

21. Kenfaui, D., Lenoir, B., Chateigner, D., Ouladdiaf, B., Gomina, M., Noudem, J. G. Development of multilayer textured Ca3Co4O9 materials for thermoelectric generators: influence of the anisotropy on the transport properties. J. Eur. Ceram. Soc. 2012, 32, 2405–2414; https://doi.org/10.1016/j.jeurceramsoc.2012.03.022 Suche in Google Scholar

22. Xu, J., Wei, C., Jia, K. Thermoelectric performance of textured Ca3-xYbxCo4O9-d ceramics. J. Alloy. Compd. 2010, 500, 227–230; https://doi.org/10.1016/j.jallcom.2010.04.014 Suche in Google Scholar

23. Khazaei, M., Malekzadeh, A., Amini, F., Mortazavi, Y., Khodadadi, A. Effect of citric acid concentration as emulsifier on perovskite phase formation of nano-sized SrMnO3 and SrCoO3 samples. Cryst. Res. Technol. 2010, 45, 1064–1068; https://doi.org/10.1002/crat.201000258 Suche in Google Scholar

24. Craig, F., Nakao, M., Nishioka, M., Nabeshima, M., Mizuno, T. Effect of water temperature on evaporation of mist sprayed from a nozzle. J. Heat Island Institute Int. 2015, 10, 35–44.Suche in Google Scholar

25. Barbooti, M. M., Al-Sammerrai, D. A. Thermal decomposition of citric acid. Thermochim. Acta 1986, 98, 119–126; https://doi.org/10.1016/0040-6031(86)87081-2.Suche in Google Scholar

26. Park, J. W., Kwak, D. H., Yoon, S. H., Choi, S. C. Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature. J. Alloy. Comp 2009, 487, 550–555; https://doi.org/10.1016/j.jallcom.2009.08.012.Suche in Google Scholar

27. Ruiz-Gonzalez, L., Cortes-Gil, R., Alonso, J. M., Gonzalez-Calbet, J. M., Vallet-Regí, M. Revisiting the role of vacancies in manganese related perovskites. Open Inorg. Chem. J. 2007, 1, 37–46; https://doi.org/10.2174/187409870701013707.Suche in Google Scholar

28. Hong, M.-H., Han, W., Lee, K.-Y., Park, H.-H. The thermoelectric properties of Au nanoparticle-incorporated Al-doped mesoporous ZnO thin films. Royal Society Open Science 2019, 6, 181799; https://doi.org/10.1098/rsos.181799.Suche in Google Scholar PubMed PubMed Central

29. Du Plessis, M. Relationship between specific surface area and pore dimension of high porosity nanoporous silicon–model and experiment. Phys. Status Solidi A 2007, 204, 2319–2328; https://doi.org/10.1002/pssa.200622237.Suche in Google Scholar

30. Sanmathi, C. S., Takahashi, Y., Sawaki, D., Klein, Y., Retoux, R., Terasaki, I., Noudem, J. G. Microstructure control on thermoelectric properties of Ca0.96Sm0.04MnO3 synthesized by co precipitation technique. Mater. Res. Bull. 2010, 45, 558–563; https://doi.org/10.1016/j.materresbull.2010.01.023.Suche in Google Scholar

31. Berbeth Mary, S., Francis, M., Sathe, V. G., Ganesan, V., Leo Rajesh, A. Enhanced thermoelectric property of nanostructured CaMnO3 by sol–gel hydrothermal method. Phys. B: Condens. Matter 2019, 575, 411707; https://doi.org/10.1016/j.physb.2019.411707.Suche in Google Scholar

32. Berbeth Mary, S., Leo Rajesh, A. Electrical and thermoelectric properties of surfactant assisted calcium cobalt oxide nanoparticles. J. Mater. Sci.: Mater. Electron. 2022, 33, 9289–9300; https://doi.org/10.1007/s10854-021-07285-4.Suche in Google Scholar

33. Othmania, S., Bejara, M., Dhahria, E., Hlil, E. K. The effect of the annealing temperature on the structural and magnetic properties of the manganites compounds. J. Alloys Compd. 2009, 475, 46–50; https://doi.org/10.1016/j.jallcom.2008.08.005.Suche in Google Scholar

34. Lifanti, M., Kirchnerova, J., Delmon, B. Effect of substitution by cerium on the activity of LaMnO3 perovskite in methane combustion. Appl. Catal., A 2003, 245, 231–243. https://doi.org/10.1016/S0926-860x(02)00644-0.Suche in Google Scholar

35. Zhang-Steenwinkel, Y., Beckers, J., Bliek, A. Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum–manganese oxides. Appl. Catal., A 2002, 235, 79–92; https://doi.org/10.1016/s0926-860x(02)00241-7.Suche in Google Scholar

36. Mouyane, M., Itaalit, B., Bernard, J., Houivet, D., Noudem, J. G. Flash combustion synthesis of electron doped-CaMnO3 thermoelectric oxides. Powder Technol. 2014, 264, 71–77; https://doi.org/10.1016/j.powtec.2014.05.022.Suche in Google Scholar

37. Gaudon, M., Laberty-Robert, C., Ansart, F., Stevens, P., Rousset, A. Preparation and characterization of La1–xSrxMnO3+δ (0⩽x⩽0.6) powder by sol–gel processing. Solid State Sci. 2002, 4, 125–133; https://doi.org/10.1016/s1293-2558(01)01208-0.Suche in Google Scholar

38. Revathy, J. S., Priya, N. S. C., Sandhya, K., Rajendran, D. N. Structural and optical studies of cerium doped gadolinium oxide phosphor. Bull. Mater. Sci. 2021, 44; https://doi.org/10.1007/s12034-020-02299-w.Suche in Google Scholar

39. Pal, M., Pal, U., Jiménez, J. M. G. Y., Pérez-Rodríguez, F. Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors. Nanoscale Res. Lett. 2012, 7, 1; https://doi.org/10.1186/1556-276x-7-1.Suche in Google Scholar PubMed PubMed Central

40. Park, C.-S., Hong, M.-H., Shin, S., Cho, H. H., Park, H.-H. Synthesis of mesoporous La0.7Sr0.3MnO3 thin films for thermoelectric materials. J. Alloys Compd. 2015, 632, 246–250; https://doi.org/10.1016/j.jallcom.2015.01.188.Suche in Google Scholar

41. Rowe, D. M. CRC Handbook of Thermoelectrics; Rowe, D. M., Ed. CRC: Boca Raton, FL, 1995.Suche in Google Scholar

42. Rekha, K., Nirmala, M., Nair, M. G., Anukaliani, A. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys. B 2010, 405, 3180–3185; https://doi.org/10.1016/j.physb.2010.04.042.Suche in Google Scholar

43. Mary, S. B., Rajesh, A. L. Influence of trivalent lanthanides substitution on the thermoelectric properties of nanostructured Ca1−xLn3 +xMnO3−δ (Ln3+ = Sm, Ce, La; x = 0, 0.1). J. Mater. Sci.: Mater. Electron. 2020, 31, 6479–6487. https://doi.org/10.1007/s10854-020-03205-0.Suche in Google Scholar

44. Sharma, A., Sanjay Kumar, P. Synthesis and characterization of CeO-ZnO nanocomposites. Nanosci. Nanotechnol. 2012, 2, 82–85; https://doi.org/10.5923/j.nn.20120203.07.Suche in Google Scholar

45. Deng, H.-W., Chen, D.-H. Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid. Chin. Phys. B 2022, 31; https://doi.org/10.1088/1674-1056/ac5399.Suche in Google Scholar

46. Raveau, B., Maignan, A., Martin, C., Hervieu, M. Colossal magnetoresistance manganite perovskites: relations between crystal chemistry and properties. Chem. Mater. 1998, 10, 2641–2652. https://doi.org/10.1021/cm9801791.Suche in Google Scholar

47. Jiamprasertboon, A., Okamoto, Y., Hiroi, Z., Siritanon, T. Thermoelectric properties of Sr and Mg double-substituted LaCoO3 at room temperature. Ceram. Int. 2014, 40, 12729–12735; https://doi.org/10.1016/j.ceramint.2014.04.123.Suche in Google Scholar

48. Wang, Y., Sui, Y., Wang, X. W/Su, Effects of substituting La3+,Y3+ and Ce4+ for Ca2+ on the high temperature transport and thermoelectric properties of CaMnO3. J. Phys. D 2009, 42, 055010; https://doi.org/10.1088/0022-3727/42/5/055010.Suche in Google Scholar

49. Dukic, J., Boškovic, S., Matovic, B. Crystal structure of Ce-doped CaMnO3 perovskite. Ceram. Int. 2009, 35, 787–790. https://doi.org/10.1016/j.ceram int.2008.02.023.10.1016/j.ceramint.2008.02.023Suche in Google Scholar

50. Ali, H. T., Jacob, J., Khalid, M., Mahmood, K., Yusuf, M., Mehboob, K., Ashar, A. Optimizing the structural, morphological and thermoelectric properties of zinc oxide by the modulation of cobalt doping concentration. J. Alloys Compd. 2021, 871, 159564; https://doi.org/10.1016/j.jallcom.2021.159564.Suche in Google Scholar

51. Berbeth Mary, S., Nalini, K., Rajalakshmi, K. Synthesis, characterization and thermoelectric properties of Ca substituted nanostructured SrMnO3 by sol–gel hydrothermal method. Mater. Today: Proced. 2022, 57, 2344–2349; https://doi.org/10.1016/j.matpr.2022.01.273 Suche in Google Scholar

52. Colder, H., Guilmeau, E., Harnois, C., Marinel, S., Retoux, R., Savary, E. Preparation of Ni-doped ZnO ceramics for thermoelectric applications. J. Eur. Ceram. Soc. 2011, 31, 2957–2963; https://doi.org/10.1016/j.jeurceramsoc.2011.07.006.Suche in Google Scholar

53. Nakhowong, R. Preparation and characterization of calcium manganese oxide (CaMnO3) nanofibers by electrospinning. Mater. Lett. 2016, 163, 222–225; https://doi.org/10.1016/j.matlet.2015.10.081.Suche in Google Scholar

54. Takashiri, M., Shirakawa, T., Miyazaki, K., Tsukamoto, H. Trans. Jpn. Soc. Mech. Eng., Ser. A 2006, 72, 1793; https://doi.org/10.1299/kikaia.72.1793.Suche in Google Scholar

55. Sun, Y., Di, C., Xu, W., Zhu, D. Advances in n‐type organic thermoelectric materials and devices. Adv. Electron. Mater. 2019, 1800825; https://doi.org/10.1002/aelm.201800825.Suche in Google Scholar

56. Sakthipandi, K., Hossain, A., Rajkumar, G. Structure–property relations in rare-earth doped manganite perovskites. Mater. Res. Found. 2019, 57, 149–174. https://doi.org/10.21741/9781644900390-7.Suche in Google Scholar

57. Löhnert, R., Stelter, M., Töpfer, J. Evaluation of soft chemistry methods to synthesize Gd-doped CaMnO3−δ with improved thermoelectric properties. Meter. Sci. Eng. B 2017, 223, 185–193; https://doi.org/10.1016/j.mseb.2017.06.014.Suche in Google Scholar

58. Solola, G. T., Klopov, M., Akinlami, J., Afolabi, A., Karazhanov, S. Z., Adebayo, G. A. First principle calculations of structural, electronic, optical and thermoelectric properties of tin (II) oxide. Mater. Res. Express 2019, 6, 125915-1–125915-8. https://doi.org/10.1088/2053-1591/ab6384.Suche in Google Scholar

Received: 2023-10-31
Accepted: 2024-02-05
Published Online: 2024-03-08
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0400/html
Button zum nach oben scrollen