Incredible electrochemical performance of ZnWO4/PANI as a favorable electrode material for supercapacitor
-
Sastipriyaa Padmanaaban
und Gopinathan Chellasamy
Abstract
ZnWO4/PANI was synthesized through the in-situ polymerization technique, revealing the wolframite monoclinic phase in its XRD pattern. The distinctive morphology of ZnWO4/PANI observed in the SEM image, exhibits enhanced redox sites, thereby improving its electrochemical performance. Cyclic voltammetry and galvanostatic charge-discharge studies confirm the pseudocapacitive behavior of ZnWO4/PANI, showcasing an impressive capacitance of 908 F g−1 at 1 A g−1 in 1 M KOH, along with a capacitive retention of 94 % over 5000 cycles. The robust conductivity of PANI and the narrow ion transport channels along with multiple oxidation states of ZnWO4 contribute to the higher specific capacity, guiding the movement of electrons and ions. This study suggests a synergistic effect in ZnWO4/PANI, resulting in remarkable electrochemical performance enhancements.
Funding source: RUSA Phase 2.0, Madurai Kamaraj University
Award Identifier / Grant number: Unassigned
Funding source: SERB-ASEAN-India collaborative research project
Award Identifier / Grant number: No. CRD/2021/000482
Funding source: Council of Scientific and Industrial Research (CSIR)
Award Identifier / Grant number: No. 03/1499/23/EMR-II
Acknowledgements
The authors express gratitude to the Advanced Materials Laboratory, School of Physics, Madurai Kamaraj University, for providing the facility for electrochemical studies.
-
Research ethics: Authors were followed the research ethics.
-
Author contributions: Sastipriyaa Padmanaaban: Conceptualization, Writing, Methodology, and Original draft. Sujin P Jose: Reviewing and Investigation. Raja Viswanathan: Formal analysis and Editing. Yadhukrishnan Kakkad Vasudevan: Validation. Gopinathan Chellasamy: Investigation.
-
Competing interests: The authors state that none of the work presented in this study may have been influenced by any known conflicting financial interests or personal ties.
-
Research funding: The authors express gratitude to RUSA Phase 2.0, MKU for the financial support. The authors express sincere gratitude for the Supercapacitor Fabrication Unit provided by DST-MES, (DST/TMD/MES/2K17/94(G)) and the financial support through SERB-ASEAN-India collaborative research project (No. CRD/2021/000482). The authors acknowledge Council of Scientific and Industrial Research (CSIR) (No. 03/1499/23/EMR-II).
-
Data availability: Not applicable.
References
1. Jalal, N. I., Ibrahim, R. I., Oudah, M. K. A review on supercapacitors: types and components. J. Phys. Conf. Ser. 2021, 1973, 012015; https://doi.org/10.1088/1742-6596/1973/1/012015.Suche in Google Scholar
2. Yesuraj, J., Suthanthiraraj, S. A. Bio-molecule templated hydrothermal synthesis of ZnWO4 nanomaterial for high-performance supercapacitor electrode application. J. Mol. Struct. 2019, 1181, 131–141; https://doi.org/10.1016/j.molstruc.2018.12.087.Suche in Google Scholar
3. Harichandran, G., Divya, P., Yesuraj, J., Muthuraaman, B. Sonochemical synthesis of chain-like ZnWO4 nanoarchitectures for high performance supercapacitor electrode application. 2020, 167, 110490; https://doi.org/10.1016/j.matchar.2020.110490.Suche in Google Scholar
4. Ma, Y., Hou, C., Zhang, H., Zhang, Q., Liu, H., Wu, S., Guo, Z. Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim. Acta 2019, 315, 114–123; https://doi.org/10.1016/j.electacta.2019.05.073.Suche in Google Scholar
5. Ambade, S. B., Ambade, R. B., Eom, W., Noh, S. H., Kim, S. H., Han, T. H. 2D Ti3C2 MXene/WO3 hybrid architectures for high-rate supercapacitors. Adv. Mater. Interfaces 2018, 5, 1–11; https://doi.org/10.1002/admi.201801361.Suche in Google Scholar
6. Sheng, R., Hu, J., Lu, X., Jia, W., Xie, J., Cao, Y. Solid-state synthesis and superior electrochemical performance of MnMoO4 nanorods for asymmetric supercapacitor. Ceram. Int. 2021, 47, 16316–16323; https://doi.org/10.1016/j.ceramint.2021.02.211.Suche in Google Scholar
7. Xia, H., Shirley Meng, Y., Yuan, G., Cui, C., Lu, L. A symmetric RuO2/RuO2 supercapacitor operating at 1.6 v by using a neutral aqueous electrolyte. Electrochem. Solid-State Lett. 2012, 15, 2012–2015; https://doi.org/10.1149/2.023204esl.Suche in Google Scholar
8. Raj, C. C., Prasanth, R. Review—advent of TiO2 nanotubes as supercapacitor electrode. J. Electrochem. Soc. 2018, 165, E345–E358; https://doi.org/10.1149/2.0561809jes.Suche in Google Scholar
9. Barclay, M., Firestein, K., Wang, X., Motta, N., Dubal, D., Ostrikov, K. Plasma-activated water for improved intercalation and pseudocapacitance of MnO2 supercapacitor electrodes. Mater. Today Sustain. 2023, 22, 100388; https://doi.org/10.1016/j.mtsust.2023.100388.Suche in Google Scholar
10. Paliwal, M. K., Meher, S. K. Hierarchically organized ultrathin NiO nanofibers/highly defective-rGO heteronanocomposite: an advanced electrode material for asymmetric supercapacitors. Adv. Mater. Interfaces 2019, 6, 1–13; https://doi.org/10.1002/admi.201900889.Suche in Google Scholar
11. Sahu, J., Kumar, S., Ahmed, F., Alvi, P., Dalela, B., Phase, D., Gupta, M., Dalela, S. Electrochemical and electronic structure properties of high-performance supercapacitor based on Nd-doped ZnO nanoparticles. J. Energy Storage 2023, 59, 106499; https://doi.org/10.1016/j.est.2022.106499.Suche in Google Scholar
12. Shivakumara, S., Penki, T. R., Munichandraiah, N. Synthesis and characterization of porous flowerlike? Fe2O3 nanostructures for supercapacitor application. ECS Electrochem. Lett. 2013, 2, 2013–2015; https://doi.org/10.1149/2.002307eel.Suche in Google Scholar
13. Wang, L., Gao, L., Wang, J., Shen, Y. MoO3 nanobelts for high-performance asymmetric supercapacitor. J. Mater. Sci. 2019, 54, 13685–13693; https://doi.org/10.1007/s10853-019-03836-7.Suche in Google Scholar
14. Mohd Abdah, M. A. A., Azman, N. H. N., Kulandaivalu, S., Sulaiman, Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des. 2020, 186, 108199; https://doi.org/10.1016/j.matdes.2019.108199.Suche in Google Scholar
15. An, C., Zhang, Y., Guo, H., Wang, Y. Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv. 2019, 1, 4644–4658; https://doi.org/10.1039/c9na00543a.Suche in Google Scholar PubMed PubMed Central
16. Kumar, G. B., Sivaiah, K., Buddhudu, S. Synthesis and characterization of ZnWO4 ceramic powder. Ceram. Int. 2010, 36, 199–202; https://doi.org/10.1016/j.ceramint.2009.07.005.Suche in Google Scholar
17. Pan, C., Liu, Z., Li, W., Zhuang, Y., Wang, Q., Chen, S. NiCo2O4@polyaniline nanotubes heterostructure anchored on carbon textiles with enhanced electrochemical performance for supercapacitor application. J. Phys. Chem. C 2019, 123, 25549–25558; https://doi.org/10.1021/acs.jpcc.9b06070.Suche in Google Scholar
18. BoopathiRaja, R., Parthibavarman, M., Nishara Begum, A. Design and fabrication of hierarchical heterostructure CuCo2O4@PPy based asymmetric device with ultra high capacitance and attractive cycling performance. Mater. Res. Bull. 2020, 126, 110817. https://doi.org/10.1016/j.materresbull.2020.110817.Suche in Google Scholar
19. Srinivasan, R., Elaiyappillai, E., Anandaraj, S., kumar Duvaragan, B., Johnson, P. M. Study on the electrochemical behavior of BiVO4/PANI composite as a high performance supercapacitor material with excellent cyclic stability. J. Electroanal. Chem. 2020, 861, 113972; https://doi.org/10.1016/j.jelechem.2020.113972.Suche in Google Scholar
20. Rajkumar, S., Elanthamilan, E., Merlin, J. P., Daisy Priscillal, I. J., Lydia, I. S. Fabrication of a CuCo2O4/PANI nanocomposite as an advanced electrode for high performance supercapacitors. Sustain. Energy Fuels 2020, 4, 5313–5326; https://doi.org/10.1039/d0se00913j.Suche in Google Scholar
21. Holze, R. Metal oxide/conducting polymer hybrids for application in supercapacitors. In Metal Oxides in Supercapacitors; Elsevier Inc.: Amsterdam, 2017.10.1016/B978-0-12-810464-4.00009-7Suche in Google Scholar
22. Zhang, Y., Li, L., Su, H., Huang, W., Dong, X. Binary metal oxide: advanced energy storage materials in supercapacitors. J. Mater. Chem. A 2015, 3, 43–59; https://doi.org/10.1039/c4ta04996a.Suche in Google Scholar
23. Manohar, A., Vijayakanth, V., Vattikuti, S. V. P., Reddy, G. R., Kim, K. H. A brief review on Zn - based materials and nanocomposites for supercapacitor applications. J. Energy Storage, 2023, 68, 107674; https://doi.org/10.1016/j.est.2023.107674.Suche in Google Scholar
24. Vinayaraj, S., Brijesh, K., Dhanush, P. C., Nagaraja, H. S. ZnWO4/SnO2 composite for supercapacitor applications. Phys. B Condens. Matter 2020, 596, 412369; https://doi.org/10.1016/j.physb.2020.412369.Suche in Google Scholar
25. Ambalagi, S. M., Devendrappa, M., Nagaraja, S., Sannakki, B. Dielectric properties of PANI/CuO nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 310, 012081; https://doi.org/10.1088/1757-899X/310/1/012081.Suche in Google Scholar
26. Srinivasan, R., Elaiyappillai, E., Nixon, E. J., Sharmila Lydia, I., Johnson, P. M. Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorgan. Chim. Acta 2020; 502, 119393; https://doi.org/10.1016/j.ica.2019.119393.Suche in Google Scholar
27. Anwar, N., Shakoor, A., Ali, G., Ahmad, H., Niaz, N. A., Seerat-Ul-Arooj, Mahmood, A. Synthesis and electrochemical characterization of polyaniline doped cadmium oxide (PANI-CdO) nanocomposites for supercapacitor applications. J. Energy Storage 2022, 55, 105446; https://doi.org/10.1016/j.est.2022.105446.Suche in Google Scholar
28. Saranya, S., Selvan, R. K., Priyadharsini, N. Synthesis and characterization of polyaniline/MnWO4 nanocomposites as electrodes for pseudocapacitors. Appl. Surf. Sci. 2012, 258, 4881–4887; https://doi.org/10.1016/j.apsusc.2012.01.104.Suche in Google Scholar
29. Anwar, N. Expeditious re-hydrogenation kinetics of ball-milled magnesium hydride (B-MgH2) decorated acid-treated halloysite nanotube (A-HNT)/polyaniline (PANI) nanocomposite (B-MgH2/A-HNT/PANI) for fuel cell applications. Ionics 2022, 55, 105446. https://doi.org/10.1016/j.est.2022.105446.Suche in Google Scholar
30. Rajkumar, S., Gowri, S., Dhineshkumar, S., Merlin, J. P., Sathiyan, A. Investigation on NiWO4/PANI composite as an electrode material for energy storage devices. New J. Chem. 2021, 45, 20612–20623; https://doi.org/10.1039/d1nj03831a.Suche in Google Scholar
31. Singh, J., Kaur, S., Kaur, G., Basu, S., Rawat, M. Biogenic ZnO nanoparticles: a study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight. Green Process. Synth. 2019, 8, 272–280; https://doi.org/10.1515/gps-2018-0084.Suche in Google Scholar
32. Subbaiah, S., Muthukrishnan, P. S., Gurusamy, R., Venkatachalam, S., Rajasekaran, T. R., Srinivasan, N. Boron nitride/polyaniline composite-based hybrid electrode for pseudocapacitor application. J. Mater. Sci. Mater. Electron. 2023, 34, 1–11; https://doi.org/10.1007/s10854-023-09824-7.Suche in Google Scholar
33. Naveed, M. Facile synthesis and characterization of conducting polymer-metal oxide based core-shell PANI-Pr2O – NiO – Co3O4 nanocomposite: as electrode material for supercapacitor. Ceram. Int. 2021, 47, 18497–18509. https://doi.org/10.1016/j.ceramint.2021.03.173.Suche in Google Scholar
34. Rajkumar, S., Christy Ezhilarasi, J., Saranya, P., Princy Merlin, J. Fabrication of CoWO4/PANI composite as electrode material for energy storage applications. J. Phys. Chem. Solids 2022, 162, 110500; https://doi.org/10.1016/j.jpcs.2021.110500.Suche in Google Scholar
35. Babu, B., Babu Eadi, S., Yoo, J., Lee, H. D., Yoo, K. Core@shell nanorods for enhancing supercapacitor performance: ZnWO4 nanorods decorated with colloidal SnO2 quantum dots. Mater. Lett. 2023; 343, 134389; https://doi.org/10.1016/j.matlet.2023.134389.Suche in Google Scholar
36. Raghavendra, K. V. G., Sreekanth, T. V. M., Ko, T. J., Kim, J., Yoo, K. Facile hydrothermal synthesis of novel ZnWO4/ZnCo2O4 electrode for high-performance supercapacitors. Mater. Lett. 2021, 287, 129296; https://doi.org/10.1016/j.matlet.2020.129296.Suche in Google Scholar
37. Yang, Y., Zhu, J., Shi, W., Zhou, J., Gong, D., Gu, S., Wang, L., Xu, Z., Lu, B. 3D nanoporous ZnWO4 nanoparticles with excellent electrochemical performances for supercapacitors. Mater. Lett. 2016, 177, 34–38; https://doi.org/10.1016/j.matlet.2016.04.168.Suche in Google Scholar
38. Vigneshwaran, J., Narayan, R. L., Ghosh, D., Chakravarthy, V., Jose, S. P. Robust hierarchical three dimensional nickel cobalt tungstate-MXene nanocomposite for high performance symmetric coin cell supercapacitors. J. Energy Storage 2022, 56, 106102; https://doi.org/10.1016/j.est.2022.106102.Suche in Google Scholar
39. Vigneshwaran, J., Jose, J., Thomas, S., Gagliardi, A., Thelakkat, M., Jose, S. P. Flexible quasi-solid-state supercapacitors based on Ti3C2-polypyrrole nanocomposites. Electrochim. Acta 2022, 429, 141051; https://doi.org/10.1016/j.electacta.2022.141051.Suche in Google Scholar
40. Vigneshwaran, J., Abraham, S., Muniyandi, B., Prasankumar, T., Li, J. T., Jose, S. Fe2O3 decorated graphene oxide/polypyrrole matrix for high energy density flexible supercapacitor. Surfaces Interfaces 2021, 27, 101572; https://doi.org/10.1016/j.surfin.2021.101572.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Preparation of fluorinated zirconia doped with tin oxide nanocomposites for photocatalytic degradation of organic dyes in contaminated water bodies
- A study of the effect of cerium ion doping concentration on the structural, electrical, and thermoelectric properties of CaMnO3 nanoparticles
- Biosensors and its diverse applications in healthcare systems
- Estimation on magnetic entropy change and specific heat capacity through phoenomological model for Heusler melt spun ribbon of Ni47Mn40−xSi x In3 (x = 1, 2 and 3)
- Probing the structural and electronic properties of MAX phases and their corresponding MXenes using first-principles calculations
- Boosted electrochemical properties of Co3O4 nanoflakes by the addition of a redox-additive electrolyte
- Evaluation of magnetic and electrochemical performance of copper oxide nanoparticles using Myristica fragrans (mace) extract
- Incredible electrochemical performance of ZnWO4/PANI as a favorable electrode material for supercapacitor
- Influence of doping concentrations on the structural, optical, and magnetic properties of Ba-doped LaCoO3 nanostructure
- Green engineering of NiO nanoparticles decorated with Arachis hypogaea shell extract for biomedical applications
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Preparation of fluorinated zirconia doped with tin oxide nanocomposites for photocatalytic degradation of organic dyes in contaminated water bodies
- A study of the effect of cerium ion doping concentration on the structural, electrical, and thermoelectric properties of CaMnO3 nanoparticles
- Biosensors and its diverse applications in healthcare systems
- Estimation on magnetic entropy change and specific heat capacity through phoenomological model for Heusler melt spun ribbon of Ni47Mn40−xSi x In3 (x = 1, 2 and 3)
- Probing the structural and electronic properties of MAX phases and their corresponding MXenes using first-principles calculations
- Boosted electrochemical properties of Co3O4 nanoflakes by the addition of a redox-additive electrolyte
- Evaluation of magnetic and electrochemical performance of copper oxide nanoparticles using Myristica fragrans (mace) extract
- Incredible electrochemical performance of ZnWO4/PANI as a favorable electrode material for supercapacitor
- Influence of doping concentrations on the structural, optical, and magnetic properties of Ba-doped LaCoO3 nanostructure
- Green engineering of NiO nanoparticles decorated with Arachis hypogaea shell extract for biomedical applications