Home Physical Sciences Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations
Article
Licensed
Unlicensed Requires Authentication

Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations

  • Anandhi Deenan Venugopal , Selvanandan Selvaraj EMAIL logo , Jhelai Sahadevan , Ikhyun Kim , Parameshwari Ramalingam and Sivaprakash Paramasivam
Published/Copyright: February 14, 2024

Abstract

The structural, morphological, magnetic, and dielectric properties of lanthanum substituted nickel ferrite (NiLa x Fe2−x O4) nanoparticles have been reported in this article. The amount of lanthanum substitution in NiLa x Fe2−x O4 sample was varied from x = 0.025 to 0.125. The nanocrystalline Ni–La ferrites were synthesized using a solution combustion reaction (SCR) method. The orthorhombic crystal system of space group Pnma (62) is shown as the single-phase in all samples through structural investigation utilizing an X-ray diffraction (XRD) pattern. The observed trend indicates a positive correlation between the concentration of La and the corresponding rise in the predicted crystallite size values, which range from 60.5 nm to 65.2 nm. The nanoscale of the surface morphology has been confirmed by the utilisation of field emission scanning electron microscopy (FESEM). Energy dispersive X-ray (EDAX) mapping provides the compositional evidence for the prepared Ni–La ferrites. In addition, X-ray photoelectron spectroscopy (XPS) determines the ionic state of the individual atoms present in these samples. It reveals that there are no changes in the ionic state of the parent component atoms by substituting La. EDAX and XPS evidence the purity of prepared NiLa x Fe2−x O4 samples without any other impurity elements. By regulating the composition of dopants, this research can substantiate the superparamagnetic characteristics of ferrites. The paramagnetic nature of lanthanum atoms involves in reducing the coercivity value. The dielectric measurement on NiLa x Fe2−x O4 samples reveals that La3+ substitution effectively influence the electro-transport properties.


Corresponding author: Selvanandan Selvaraj, Department of Physics, ACS College of Engineering, Affiliated to VTU, Belagavi, Bangalore 560074, India, E-mail:

Funding source: National Research Foundation of Korea (NRF) grant.

Award Identifier / Grant number: 2022R1C1C1006414

Acknowledgments

The research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1C1C1006414).

  1. Research ethics: Not applicable.

  2. Author contributions: D.V.A.: Formal Analysis, Data Curation, Conceptualization and Writing-Original Draft; S.S.: Conceptualization, Data Curation, Formal Analysis, Supervision, Writing-Review and Editing and Proof Reading; J.S.: Formal Analysis, Data Curation, Conceptualization and Writing-Review and Editing; I.K.: Data Curation, Supervision, Writing-Review and Editing, and Project administration; P.S.: Formal Analysis, Data Curation, Conceptualization, Validation, Writing-Review and Editing. All authors have read and agreed to the published version of the manuscript.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: The research fund was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1C1C1006414).

  5. Data availability: All the data used in the manuscript are within the manuscript.

References

1. Manikandan, V., Mirzaei, A., Vigneselvan, S., Kavita, S., Sakharam Mane, R., Kim, S. S., Chandrasekaran, J. ACS Omega 2019, 4, 12919–12926. https://doi.org/10.1021/acsomega.9b01562.Search in Google Scholar PubMed PubMed Central

2. Satalkar, M., Kane, S. N. J. Phys.: Conf. Ser. 2016, 755, 012047. https://doi.org/10.1088/1742-6596/755/1/012050.Search in Google Scholar

3. Pilania, G., Kocevski, V., Valdez, J. A., Kreller, C. R., Uberuaga, B. P. Commun. Mater. 2020, 1, 84. https://doi.org/10.1038/s43246-020-00082-2.Search in Google Scholar

4. Jacob, B. P., Thankachan, S., Xavier, S., Mohammed, E. M. Phys. Scr. 2011, 84, 045702. https://doi.org/10.1088/0031-8949/84/04/045702.Search in Google Scholar

5. Ahlawat, A., Sathe, V. G., Reddy, V. R., Gupta, A. J. Magn. Magn. Mater. 2011, 323, 2049–2054. https://doi.org/10.1016/j.jmmm.2011.03.01.Search in Google Scholar

6. Moradmard, H., FarjamiShayesteh, S., Tohidi, P., Abbas, Z. M. Khaleghi. 2015, 650, 116–122. https://doi.org/10.1016/j.jallcom.2015.07.269.Search in Google Scholar

7. Pubby, K., Vijay Babu, K., Narang, S. B. Mater. Sci. Eng. B 2020, 255, 114513. https://doi.org/10.1016/j.mseb.2020.114513.Search in Google Scholar

8. Balavijayalakshmi, J., Suriyanarayanan, N., Jayaprakash, R. J. Magn. Magn. Mater. 2015, 385, 302–307. https://doi.org/10.1016/j.jmmm.2015.03.036.Search in Google Scholar

9. Chavarría-Rubio, J. A., Cortés-Hernández, D. A., Garay-Tapia, A. M., Francisco, H.-López G. J. Magn. Magn. Mater. 2022, 553, 169253. https://doi.org/10.1016/j.jmmm.2022.169253.Search in Google Scholar

10. Hochschild, R., Fuess, H. J. Mater. Chem. 2000, 10, 539–542. https://doi.org/10.1039/A905583E.Search in Google Scholar

11. Thakur, S., Katyal, S. C., Singh, M. Appl. Phys. Lett. 2007, 9, 262501. https://doi.org/10.1063/1.2824454.Search in Google Scholar

12. Cheng, Y., Zheng, Y., Wang, Y., Bao, F., Qin, Y. Solid State Chem. 2005, 178, 2394–2397. https://doi.org/10.1016/j.jssc.2005.05.006.Search in Google Scholar

13. Sepelak, V., Baabe, D., Mienert, D., Litterst, F. J. F., Becker, K. D. J. Magn. Magn. Mater. 2003, 257, 377–386. https://doi.org/10.1016/S0304-8853(02)01279-9.Search in Google Scholar

14. Varma, A., Mukasyan, A. S., Rogachev, A. S., Manukyan, K. V. Chem. Rev. 2016, 116, 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279.Search in Google Scholar PubMed

15. Ni, Q., Sun, L., Cao, E., Hao, W., Zhang, Y., Ju, L. Ceram. Int. 2020, 46, 9722–9728. https://doi.org/10.1016/j.ceramint.2019.12.240.Search in Google Scholar

16. Rahman, A., Rafiq, M. A., Karim, S., Maaz, K., Siddique, M., Hasan, M. M. Phys. B: Condens. Matter 2011, 406, 4393–4399. https://doi.org/10.1016/j.physb.2011.08.094.Search in Google Scholar

17. Tahar, L. B., Smiri, L. S., Artus, M., Joudrier, A. L., Herbst, F., Vaulay, M., Ammar, S., Fiévet, F. Mater. Res. Bull. 2007, 42, 1888–1896. https://doi.org/10.1016/j.materresbull.2006.12.014.Search in Google Scholar

18. Yao, H., Ning, X., Zhao, H., Hao, A., Ismail, M. ACS Omega 2021, 6, 6305–6311. https://doi.org/10.1021/acsomega.0c06097.Search in Google Scholar PubMed PubMed Central

19. Jaffari, G. H., Rumaiz, A. K., Woicik, J. C., Shah, S. I. J. Appl. Phys. 2012, 111, 093906. https://doi.org/10.1063/1.4704690.Search in Google Scholar

20. Yan, Z., Gao, J., Li, Y., Zhang, M., Guo, M. RSC Adv. 2015, 5, 92778–92787. https://doi.org/10.1039/C5RA17145H.Search in Google Scholar

21. Sonia, M. M. L., Blessim, S., Pauline, S. Int. J. Res. 2014, 1, 1051–1054.Search in Google Scholar

22. Gu, Z., Xiang, X., Fan, G., Li, F. J. Phys. Chem. C 2008, 112, 18459; https://doi.org/10.1021/jp806682q.Search in Google Scholar

23. Vadivel, M., Ramesh Babu, R., Sethuraman, K., Ramamurthi, K., Arivanandhan, M. J. Magn. Magn. Mater. 2014, 362, 122–129. https://doi.org/10.1016/j.jmmm.2014.03.016.Search in Google Scholar

24. Murugesan, C., Chandrasekaran, G. RSC Adv. 2015, 5, 73714–73725. https://doi.org/10.1039/C5RA14351A.Search in Google Scholar

25. Dirkes, H., Heumann, Th. J. Less-Common Met. 1982, 83, L11–L15. https://doi.org/10.1016/0022-5088(82)90179-5.Search in Google Scholar

26. Murugesan, C., Uganda, K., Okrasa, L., Shen, J., Chandrasekaran, G. Ceram. Int. 2021, 47, 1672–1685. https://doi.org/10.1016/j.ceramint.2020.08.284.Search in Google Scholar PubMed PubMed Central

27. Jahan, N., M. Khan, N. I., Khandaker, J. I. ACS Omega 2021, 6, 32852–32862. https://doi.org/10.1021/acsomega.1c04832.Search in Google Scholar PubMed PubMed Central

28. Sivaprakash, P., Nitthin Ananth, A., Nagarajan, V., Parameshwari, R., Arumugam, S., Jose, S. P., Esakki Muthu, S. Mater. Chem. Phys. 2020, 248, 122922. https://doi.org/10.1016/j.matchemphys.2020.122922.Search in Google Scholar

29. Sivaprakash, P., Divya, S., Parameshwari, R., Saravanan, C., Sagadevan, S., Arumugam, S., Esakki Muthu, S. J. Mater. Sci.: Mater. Electron. 2020, 31, 16369–16378; https://doi.org/10.1007/s10854-020-04187-9.Search in Google Scholar

30. Ramana, C. V., Mauger, A., Gendron, F., Julien, C. M., Zaghib, K. J. Power Sources 2009, 187, 555–564. https://doi.org/10.1016/j.jpowsour.2008.11.042.Search in Google Scholar

31. Divya, S., Sivaprakash, P., Raja, S., Esakki Muthu, S., Kim, I., Renuka, N., Arumugam, S., Oh, T. H. Ceram. Int. 2022, 48, 33208–33218; https://doi.org/10.1016/j.ceramint.2022.07.263.Search in Google Scholar

32. Divya, S., Sivaprakash, P., Raja, S., Esakki Muthu, S., EmadEed, M., Arumugam, S., Oh, T. H. Appl. Nanosci. 2023, 13, 1327–1336; https://doi.org/10.1007/s13204-021-02026-9.Search in Google Scholar

33. Arumugam, S., Sivaprakash, P., Dixit, A., Chaurasiya, R., Govindaraj, L., Sathiskumar, M., Chatterjee, S., Suryanarayanan, R. Sci. Rep. 2019, 9, 3200; https://doi.org/10.1038/s41598-019-39083-8.Search in Google Scholar PubMed PubMed Central

Received: 2023-11-21
Accepted: 2024-01-17
Published Online: 2024-02-14
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0485/html?lang=en
Scroll to top button