Home Physical Sciences Cellulose acetate sheet supported gold nanoparticles for the catalytic reduction of toxic organic pollutants
Article
Licensed
Unlicensed Requires Authentication

Cellulose acetate sheet supported gold nanoparticles for the catalytic reduction of toxic organic pollutants

  • Fahim Ullah , Adnan Khan , Kashif Gul , Abdullah M. Asiri , Tahseen Kamal and Nauman Ali EMAIL logo
Published/Copyright: July 24, 2024

Abstract

Water contamination by toxic organic dyes represents a significant global challenge necessitating effective remediation strategies. Due to their high catalytic activity, considerable attention has been gained to metal-based nanocatalysts. Cellulose acetate sheets supported by gold nanoparticles through a reduction method were synthesized. The composite synthesized material presents a compelling platform for catalytic reduction in the remediation of toxic organic pollutants, ensuring controlled particle size and stability. In this study, the prepared cellulose acetate sheet (CAsheet) was dipped in a 0.001 M aqueous chloroauric acid (HAuCl4) solution and reduced by immersion in a 0.1 M sodium borohydride (NaBH4) aqueous solution. After the successful preparation of virgin cellulose acetate sheet (CAsheet) and gold-supported cellulose acetate sheet (Au-CAsheet) samples were assessed by scanning electron microscopy (SEM), X-ray crystallography (XRD), energy dispersive X-rays spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR) analysis. The catalytic reduction reaction of toxic compounds i.e. reduction of 4-nitroaniline (4-NA), Congo red (CR), and reactive yellow (RY-42) by using NaBH4. The catalytic activity of the Au-CAsheet was exhibited by the reaction rate constant (kapp) values 0.3189, 0.1596, and 0.1593 min−1 for CR, 4-NA, and RY-42 respectively. This kind of procedure for Au-CAsheet synthesis may be valid for different applications in catalysis, sensing, and environmental application.


Corresponding author: Nauman Ali, Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, Pakistan, E-mail:

Funding source: Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah

Award Identifier / Grant number: G: 362-130-1440

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G: 362-130-1440. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

  1. Research ethics: Not applicable.

  2. Author contributions: Fahim Ullah: writing - original draft, formal analysis. Adnan Khan: methodology, project administration. Kashif Gul: conceptualization, writing - review & editing. Tahseen Kamal: conceptualization, writing - review & editing. Abdullah M Asiri: supervision, project administration. Nauman Ali: supervision, writing - original draft, project administration, resources.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G: 362-130-1440. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

  5. Data availability: Not applicable.

References

1. Quesada, H. B.; Baptista, A. T. A.; Cusioli, L. F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-Cost Adsorbents: A Review. Chemosphere 2019, 222, 766–780. https://doi.org/10.1016/j.chemosphere.2019.02.009.Search in Google Scholar PubMed

2. Kamal, T.; Asiri, A. M.; Ali, N. Catalytic Reduction of 4-Nitrophenol and Methylene Blue Pollutants in Water by Copper and Nickel Nanoparticles Decorated Polymer Sponges. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2021, 261, 120019. https://doi.org/10.1016/j.saa.2021.120019.Search in Google Scholar PubMed

3. Wang, J.; Wan, Y.; Wang, X.; Pu, Y.; Ali, N.; Yuan, S.; Zhang, Q.; Bilal, M. Fabrication and Characterization of Inverse Opal Tin Dioxide as a Novel and High-Performance Photocatalyst for Degradation of Rhodamine B Dye. Inorg. Nano-Met. Chem. 2021, 51, 150–158. https://doi.org/10.1080/24701556.2020.1769664.Search in Google Scholar

4. Duan, P.; Khan, S.; Ali, N.; Shereen, M. A.; Siddique, R.; Ali, B.; Iqbal, H. M. N.; Nabi, G.; Sajjad, W.; Bilal, M. Biotransformation Fate and Sustainable Mitigation of a Potentially Toxic Element of Mercury from Environmental Matrices. Arab. J. Chem. 2020, 13, 6949–6965. https://doi.org/10.1016/j.arabjc.2020.06.041.Search in Google Scholar

5. Dotto, G. L.; McKay, G. Current Scenario and Challenges in Adsorption for Water Treatment. J. Environ. Chem. Eng. 2020, 8, 103988. https://doi.org/10.1016/j.jece.2020.103988.Search in Google Scholar

6. Guan, S.; Li, R.; Sun, X.; Xian, T.; Yang, H. Construction of Novel Ternary Au/LaFeO3/Cu2O Composite Photocatalysts for RhB Degradation via Photo-Fenton Catalysis. Mater. Technol. 2021, 36, 603–615. https://doi.org/10.1080/10667857.2020.1782062.Search in Google Scholar

7. Naseeb, F.; Ali, N.; Khalil, A.; Khan, A.; Asiri, A. M.; Kamal, T.; Bakhsh, E. M.; Ul-Islam, M. Photocatalytic Degradation of Organic Dyes by U3MnO10 Nanoparticles under UV and Sunlight. Inorg. Chem. Commun. 2021, 134, 109075. https://doi.org/10.1016/j.inoche.2021.109075.Search in Google Scholar

8. Nwaehujor Chinaka, O.; Ode Julius, O.; Nwinyi Florence, C.; Madubuike Stella, A. Anticoagulant and Antioxidant Activities of Dracaena Arborea Leaves (Wild.) Link. Am. J. Biomed. Res. 2013, 1, 86–92; https://doi.org/10.12691/ajbr-1-4-4.Search in Google Scholar

9. Perelshtein, I.; Applerot, G.; Perkas, N.; Guibert, G.; Mikhailov, S.; Gedanken, A. Sonochemical Coating of Silver Nanoparticles on Textile Fabrics (Nylon, Polyester and Cotton) and Their Antibacterial Activity. Nanotechnology 2008, 19, 245705. https://doi.org/10.1088/0957-4484/19/24/245705.Search in Google Scholar PubMed

10. Salama, A.; Abouzeid, R.; Leong, W. S.; Jeevanandam, J.; Samyn, P.; Dufresne, A.; Bechelany, M.; Barhoum, A. Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. Nanomaterials 2021, 11, 3008. https://doi.org/10.3390/nano11113008.Search in Google Scholar PubMed PubMed Central

11. Ali, N.; Riaz, A.; Asiri, A. M.; Kamal, T. Photocatalytic Performance Evaluation of Bismuth Doped Tin-Dioxide under UV and Direct Sunlight Irradiation for Congo Red Dye Degradation. J. Chem. Soc. Pak. 2020, 42. https://doi.org/10.52568/000689.Search in Google Scholar

12. Malik, S.; Khan, A.; Rahman, G.; Ali, N.; Khan, H.; Khan, S.; Sotomayor, M. D. P. T. Core–Shell Magnetic Molecularly Imprinted Polymer for Selective Recognition and Detection of Sunset Yellow in Aqueous Environment and Real Samples. Environ. Res. 2022, 212, 113209. https://doi.org/10.1016/j.envres.2022.113209.Search in Google Scholar PubMed

13. Awais; Ali, N.; Khan, A.; Asiri, A. M.; Kamal, T. Potential Application of In-Situ Synthesized Cobalt Nanoparticles on Chitosan-Coated Cotton Cloth Substrate as Catalyst for the Reduction of Pollutants. Environ. Technol. Innov. 2021, 23, 101675. https://doi.org/10.1016/j.eti.2021.101675.Search in Google Scholar

14. Kamal, T.; Khan, S. B.; Asiri, A. M. Synthesis of Zero-Valent Cu Nanoparticles in the Chitosan Coating Layer on Cellulose Microfibers: Evaluation of Azo Dyes Catalytic Reduction. Cellulose 2016, 23, 1911–1923. https://doi.org/10.1007/s10570-016-0919-9.Search in Google Scholar

15. Kamal, T.; Khan, S. B.; Asiri, A. M. Nickel Nanoparticles-Chitosan Composite Coated Cellulose Filter Paper: An Efficient and Easily Recoverable Dip-Catalyst for Pollutants Degradation. Environ. Pollut. 2016, 218, 625–633. https://doi.org/10.1016/j.envpol.2016.07.046.Search in Google Scholar PubMed

16. Kamal, T.; Ahmad, I.; Khan, S. B.; Asiri, A. M. Synthesis and Catalytic Properties of Silver Nanoparticles Supported on Porous Cellulose Acetate Sheets and Wet-Spun Fibers. Carbohydr. Polym. 2017, 157, 294–302. https://doi.org/10.1016/j.carbpol.2016.09.078.Search in Google Scholar PubMed

17. Kamal, T.; Ahmad, I.; Khan, S. B.; Ul-Islam, M.; Asiri, A. M. Microwave Assisted Synthesis and Carboxymethyl Cellulose Stabilized Copper Nanoparticles on Bacterial Cellulose Nanofibers Support for Pollutants Degradation. J. Polym. Environ. 2019, 27, 2867–2877. https://doi.org/10.1007/s10924-019-01565-1.Search in Google Scholar

18. Kamal, T.; Khalil, A.; Bakhsh, E. M.; Khan, S. B.; Chani, M. T. S.; Ul-Islam, M. Efficient Fabrication, Antibacterial and Catalytic Performance of Ag-NiO Loaded Bacterial Cellulose Paper. Int. J. Biol. Macromol. 2022, 206, 917–926. https://doi.org/10.1016/j.ijbiomac.2022.03.067.Search in Google Scholar PubMed

19. Ali, N.; Ali, F.; Said, A.; Begum, T.; Bilal, M.; Rab, A.; Sheikh, Z. A.; Iqbal, H. M. N.; Ahmad, I. Characterization and Deployment of Surface-Engineered Cobalt Ferrite Nanospheres as Photocatalyst for Highly Efficient Remediation of Alizarin Red S Dye from Aqueous Solution. J. Inorg. Organomet. Polym. Mater. 2020, 30, 5063–5073. https://doi.org/10.1007/s10904-020-01654-y.Search in Google Scholar

20. Ali, N.; Ali, F.; Khurshid, R.; Ikramullah; Ali, Z.; Afzal, A.; Bilal, M.; Iqbal, H. M. N.; Ahmad, I. TiO2 Nanoparticles and Epoxy-TiO2 Nanocomposites: A Review of Synthesis, Modification Strategies, and Photocatalytic Potentialities. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4829–4846. https://doi.org/10.1007/s10904-020-01668-6.Search in Google Scholar

21. Muhammad, Z.; Ali, F.; Sajjad, M.; Ali, N.; Bilal, M.; Shaik, M. R.; Adil, S. F.; Sharaf, M. A. F.; Awwad, E. M.; Khan, M. Zirconium-Doped Chromium IV Oxide Nanocomposites: Synthesis, Characterization, and Photocatalysis towards the Degradation of Organic Dyes. Catalysts 2021, 11, 117. https://doi.org/10.3390/catal11010117.Search in Google Scholar

22. Kim, B.; Song, W. C.; Park, S. Y.; Park, G. Green Synthesis of Silver and Gold Nanoparticles via Sargassum Serratifolium Extract for Catalytic Reduction of Organic Dyes. Catalysts 2021, 11, 347. https://doi.org/10.3390/catal11030347.Search in Google Scholar

23. Benhadria, N.; Hachemaoui, M.; Zaoui, F.; Mokhtar, A.; Boukreris, S.; Attar, T.; Belarbi, L.; Boukoussa, B. Catalytic Reduction of Methylene Blue Dye by Copper Oxide Nanoparticles. J. Clust. Sci. 2022, 33, 249–260. https://doi.org/10.1007/s10876-020-01950-0.Search in Google Scholar

24. Lu, Y.; Wan, X.; Li, L.; Sun, P.; Liu, G. Synthesis of a Reusable Composite of Graphene and Silver Nanoparticles for Catalytic Reduction of 4-nitrophenol and Performance as Anti-colorectal Carcinoma. J. Mater. Res. Technol. 2021, 12, 1832–1843. https://doi.org/10.1016/j.jmrt.2021.03.093.Search in Google Scholar

25. Ali, F.; Khan, S. B.; Kamal, T.; Anwar, Y.; Alamry, K. A.; Asiri, A. M. Anti-bacterial Chitosan/zinc Phthalocyanine Fibers Supported Metallic and Bimetallic Nanoparticles for the Removal of Organic Pollutants. Carbohydr. Polym. 2017, 173, 676–689. https://doi.org/10.1016/j.carbpol.2017.05.074.Search in Google Scholar PubMed

26. Ali, N.; Awais; Kamal, T.; Ul-Islam, M.; Khan, A.; Shah, S. J.; Zada, A. Chitosan-coated Cotton Cloth Supported Copper Nanoparticles for Toxic Dye Reduction. Int. J. Biol. Macromol. 2018, 111, 832–838. https://doi.org/10.1016/j.ijbiomac.2018.01.092.Search in Google Scholar PubMed

27. Haider, S.; Kamal, T.; Khan, S. B.; Omer, M.; Haider, A.; Khan, F. U.; Asiri, A. M. Natural Polymers Supported Copper Nanoparticles for Pollutants Degradation. Appl. Surf. Sci. 2016, 387, 1154–1161. https://doi.org/10.1016/j.apsusc.2016.06.133.Search in Google Scholar

28. Hosseini, H.; Mousavi, S. M. Bacterial Cellulose/polyaniline Nanocomposite Aerogels as Novel Bioadsorbents for Removal of Hexavalent Chromium: Experimental and Simulation Study. J. Clean. Prod. 2021, 278, 123817. https://doi.org/10.1016/j.jclepro.2020.123817.Search in Google Scholar

29. Khalil, A.; Ali, N.; Asiri, A. M.; Kamal, T.; Khan, S. B.; Ali, J. Synthesis and Catalytic Evaluation of Silver@nickel Oxide and Alginate Biopolymer Nanocomposite Hydrogel Beads. Cellulose 2021, 28, 11299–11313. https://doi.org/10.1007/s10570-021-04248-0.Search in Google Scholar

30. Khalil, A.; Ali, N.; Khan, A.; Asiri, A. M.; Kamal, T. Catalytic Potential of Cobalt Oxide and Agar Nanocomposite Hydrogel for the Chemical Reduction of Organic Pollutants. Int. J. Biol. Macromol. 2020, 164, 2922–2930. https://doi.org/10.1016/j.ijbiomac.2020.08.140.Search in Google Scholar PubMed

31. Akhtar, K.; Ali, F.; Sohni, S.; Kamal, T.; Asiri, A. M.; Bakhsh, E. M.; Khan, S. B. Lignocellulosic Biomass Supported Metal Nanoparticles for the Catalytic Reduction of Organic Pollutants. Environ. Sci. Pollut. Res. 2020, 27, 823–836. https://doi.org/10.1007/s11356-019-06908-y.Search in Google Scholar PubMed

32. Yadav, N.; Hakkarainen, M. Degradable or Not? Cellulose Acetate as a Model for Complicated Interplay between Structure, Environment and Degradation. Chemosphere 2021, 265, 128731. https://doi.org/10.1016/j.chemosphere.2020.128731.Search in Google Scholar PubMed

33. Pandele, A. M.; Iovu, H.; Orbeci, C.; Tuncel, C.; Miculescu, F.; Nicolescu, A.; Deleanu, C.; Voicu, S. I. Surface Modified Cellulose Acetate Membranes for the Reactive Retention of Tetracycline. Sep. Purif. Technol. 2020, 249, 117145. https://doi.org/10.1016/j.seppur.2020.117145.Search in Google Scholar

34. Anitha, S.; Brabu, B.; Thiruvadigal, D. J.; Gopalakrishnan, C.; Natarajan, T. S. Optical, Bactericidal and Water Repellent Properties of Electrospun Nano-Composite Membranes of Cellulose Acetate and ZnO. Carbohydr. Polym. 2012, 87, 1065–1072. https://doi.org/10.1016/j.carbpol.2011.08.030.Search in Google Scholar

35. Aris, N. I. F.; Rahman, N. A.; Wahid, M. H.; Yahaya, N.; Abdul Keyon, A. S.; Kamaruzaman, S. Superhydrophilic Graphene Oxide/electrospun Cellulose Nanofibre for Efficient Adsorption of Organophosphorus Pesticides From Environmental Samples. R. Soc. Open Sci. 2020, 7, 192050. https://doi.org/10.1098/rsos.192050.Search in Google Scholar PubMed PubMed Central

36. Arthanareeswaran, G.; Thanikaivelan, P.; Srinivasn, K.; Mohan, D.; Rajendran, M. Synthesis, Characterization and Thermal Studies on Cellulose Acetate Membranes With Additive. Eur. Polym. J. 2004, 40, 2153–2159. https://doi.org/10.1016/j.eurpolymj.2004.04.024.Search in Google Scholar

37. El-Sayed, M. M. H.; Elsayed, R. E.; Attia, A.; Farghal, H. H.; Azzam, R. A.; Madkour, T. M. Novel Nanoporous Membranes of Bio-Based Cellulose Acetate, Poly (lactic Acid) and Biodegradable Polyurethane In-Situ Impregnated with Catalytic Cobalt Nanoparticles for the Removal of Methylene Blue and Congo Red Dyes from Wastewater. Carbohydr. Polym. Technol. Appl. 2021, 2, 100123. https://doi.org/10.1016/j.carpta.2021.100123.Search in Google Scholar

38. Peng, S.; Gao, F.; Zeng, D.; Peng, C.; Chen, Y.; Li, M. Synthesis of Ag–Fe3O4 Nanoparticles Supported on Polydopamine-Functionalized Porous Cellulose Acetate Microspheres: Catalytic and Antibacterial Applications. Cellulose 2018, 25, 4771–4782. https://doi.org/10.1007/s10570-018-1886-0.Search in Google Scholar

39. Yang, H.; Jiang, P. Large-Scale Colloidal Self-Assembly by Doctor Blade Coating. Langmuir 2010, 26, 13173–13182. https://doi.org/10.1021/la101721v.Search in Google Scholar PubMed

40. Kendouli, S.; khalfallah, O.; Sobti, N.; Bensouissi, A.; Avci, A.; Eskizeybek, V.; Achour, S. Modification of Cellulose Acetate Nanofibers with PVP/Ag Addition. Mater. Sci. Semicond. Process. 2014, 28, 13–19. https://doi.org/10.1016/j.mssp.2014.03.010.Search in Google Scholar

41. Celebioglu, A.; Uyar, T. Electrospun Porous Cellulose Acetate Fibers from Volatile Solvent Mixture. Mater. Lett. 2011, 65, 2291–2294. https://doi.org/10.1016/j.matlet.2011.04.039.Search in Google Scholar

42. Amin, K. A.; Hameid II, H. A.; Elsttar, A. A. Effect of Food Azo Dyes Tartrazine and Carmoisine on Biochemical Parameters Related to Renal, Hepatic Function and Oxidative Stress Biomarkers in Young Male Rats. Food Chem. Toxicol. 2010, 48, 2994–2999, https://doi.org/10.1016/j.fct.2010.07.039.Search in Google Scholar PubMed

43. Fizer, M.; Sidey, V.; Tupys, A.; Ostapiuk, Y.; Tymoshuk, O.; Bazel, Y. On the Structure of Transition Metals Complexes with the New Tridentate Dye of Thiazole Series: Theoretical and Experimental Studies. J. Mol. Struct. 2017, 1149, 669–682. https://doi.org/10.1016/j.molstruc.2017.08.037.Search in Google Scholar

44. Rauf, M. A.; Meetani, M. A.; Hisaindee, S. An Overview on the Photocatalytic Degradation of Azo Dyes in the Presence of TiO2 Doped with Selective Transition Metals. Desalination 2011, 276, 13–27. https://doi.org/10.1016/j.desal.2011.03.071.Search in Google Scholar

45. Asgher, M.; Bhatti, H. N. Evaluation of Thermodynamics and Effect of Chemical Treatments on Sorption Potential of Citrus Waste Biomass for Removal of Anionic Dyes from Aqueous Solutions. Ecol. Eng. 2012, 38, 79–85. https://doi.org/10.1016/j.ecoleng.2011.10.004.Search in Google Scholar

46. Indana, M. K.; Gangapuram, B. R.; Dadigala, R.; Bandi, R.; Guttena, V. A Novel Green Synthesis and Characterization of Silver Nanoparticles Using Gum Tragacanth and Evaluation of Their Potential Catalytic Reduction Activities with Methylene Blue and Congo Red Dyes. J. Anal. Sci. Technol. 2016, 7, 19. https://doi.org/10.1186/s40543-016-0098-1.Search in Google Scholar

47. Shi, C.; Zhu, N.; Cao, Y.; Wu, P. Biosynthesis of Gold Nanoparticles Assisted by the Intracellular Protein Extract of Pycnoporus Sanguineus and its Catalysis in Degradation of 4-Nitroaniline. Nanoscale Res. Lett. 2015, 10, 147. https://doi.org/10.1186/s11671-015-0856-9.Search in Google Scholar PubMed PubMed Central

48. Srivastava, S. K.; Yamada, R.; Ogino, C.; Kondo, A. Biogenic Synthesis and Characterization of Gold Nanoparticles by Escherichia coli K12 and its Heterogeneous Catalysis in Degradation of 4-Nitrophenol. Nanoscale Res. Lett. 2013, 8, 70. https://doi.org/10.1186/1556-276X-8-70.Search in Google Scholar PubMed PubMed Central

49. Bhuiyan, Md. S. H.; Miah, M. Y.; Paul, S. C.; Aka, T. D.; Saha, O.; Rahaman, Md. M.; Sharif, Md. J. I.; Habiba, O.; Ashaduzzaman, Md. Green Synthesis of Iron Oxide Nanoparticle Using Carica Papaya Leaf Extract: Application for Photocatalytic Degradation of Remazol Yellow RR Dye and Antibacterial Activity. Heliyon 2020, 6, e04603. https://doi.org/10.1016/j.heliyon.2020.e04603.Search in Google Scholar PubMed PubMed Central

50. Neppolian, B.; Kanel, S. R.; Choi, H. C.; Shankar, M. V.; Arabindoo, B.; Murugesan, V. Photocatalytic Degradation of Reactive Yellow 17 Dye in Aqueous Solution in the Presence of TiO2 with Cement Binder. Int. J. Photoenergy 2003, 5, 45–49. https://doi.org/10.1155/S1110662X03000126.Search in Google Scholar

51. Schreiber, C.; de Souza, F. M. F.; de Jesus, P. C.; Zapp, E.; Brondani, P. B.; Schreiber, C.; de Souza, F. M. F.; de Jesus, P. C.; Zapp, E.; Brondani, P. B. Comparative Study of Degradation of Reactive Dyes and Decolorization and Detoxification in Aqueous Solution Applying DyP Peroxidases Isolated from Saccharomonospora Viridis (SviDyP) and Thermobifida Fusca (TfuDyp). J. Braz. Chem. Soc. 2021, 32, 1249–1258. https://doi.org/10.21577/0103-5053.20210027.Search in Google Scholar

Received: 2023-11-02
Accepted: 2024-07-03
Published Online: 2024-07-24
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0420/pdf?lang=en
Scroll to top button