Startseite Naturwissenschaften Numerical study on the temperature dependence of soot formation in acetylene pyrolysis blended with methane, formaldehyde, methanol, and dimethyl ether
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical study on the temperature dependence of soot formation in acetylene pyrolysis blended with methane, formaldehyde, methanol, and dimethyl ether

  • Heidi Böhm EMAIL logo , Marina Braun-Unkhoff und Helga Jander
Veröffentlicht/Copyright: 3. April 2024

Abstract

This paper addresses the combined effects of varying C/H and C/O ratios as well as of the molecular structure of the fuels selected on the normalized soot volume fraction f V. For the simulations, an already existing and validated reaction mechanism for the pyrolysis of C2H2 in argon, Aghsaee et al. (Combust. Flame 2014, 161, 2263–2269), was used in the current work. It was extended with PAH reactions from coronene (C24H12) up to ovalene (C32H14), whereas general principles for the rapid build-up of large PAHs were presented. Soot formation was modeled according to Appel et al. (Combust. Flame 2000, 121, 122–136) by applying the method of moments. A validation of the extended reaction model was carried out for shock-wave-induced O2/C2H2 mixtures from literature. In the following, the influence of blends of methane (CH4), formaldehyde (CH2O), methanol (CH3OH), and dimethyl ether (CH3)2O on soot formation during C2H2 pyrolysis diluted in Ar was studied. Special emphasis was laid on the inception chemistry of soot formation. The role of intermediates, such as the propargyl radical (C3H3), leading towards benzene and polyaromatic hydrocarbon (PAH) formation and their interplay with hydrogen molecules (H2) to H atoms (H) ratio was examined. All blends increased the ratio of the concentrations of H2 and H leading thus to reduced soot inception and soot formation. However, soot suppressing effects were overrun by supporting ones when the additives provided suitable molecular groups, such as methyl radicals (CH3), in sufficient high concentrations for early aromatic ring formation. Thus, a prominent synergistic effect on soot formation was found for the CH4/C2H2 mixture only. Besides, species able to mirror characteristics of the soot formation process, such as the peak value of the normalized soot volume fraction, are presented. The findings of this work indicate the synergistic effect of H2/H and C/O ratios as well as of methyl radicals on the PAHs’ production of appropriate size able to initiate soot inception process in an aliphatic fuel.


Corresponding author: Heidi Böhm, Institute for Combustion and Gas Dynamics – Reactive Fluids, University of Duisburg-Essen, Lotharstraße 1, Duisburg 47057, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft (DFG) project title "Der Einfluss von Wasserstoff und Sauerstoff auf die ersten Schritte der Rußbildung"

Award Identifier / Grant number: 275255277

Acknowledgments

The authors thank Prof. Dr. C. Schulz for providing the facilities at the Institute for Combustion and Gas Dynamics – Reactive Fluids, University of Duisburg-Essen, Germany, to support this work, Dr. M. Fikri for fruitful discussions, and Dr. Elke Goos (DLR Stuttgart, Germany) for preparing Figure 2 on the structures of essential PAHs presented here.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: Financial assistance from Deutsche Forschungsgemeinschaft (DFG) award number 275255277 is gratefully acknowledged.

  5. Data availability: Not applicable.

References

1. Prado, G., Lahaye, J. Soot in combustion systems and its toxic properties. In Particulate Carbon: Formation during Combustion; Siegla, D. C., Smith, K. W., Eds.; Plenum: New York, USA, 1983; pp. 143–164.10.1007/978-1-4684-4463-6Suche in Google Scholar

2. Jander, H. An International Round Table Discussion, Nachrichten der Akademie der Wissenschaften Göttingen; Vandenhoeck & Ruprecht: Göttingen, Germany, 1990.Suche in Google Scholar

3. Homann, K.-H. Angew. Chem. 1998, 110, 2572–2590; https://doi.org/10.1002/(sici)1521-3757(19980918)110:18<2572::aid-ange2572>3.0.co;2-b.10.1002/(SICI)1521-3757(19980918)110:18<2572::AID-ANGE2572>3.0.CO;2-BSuche in Google Scholar

4. Braun-Unkhoff, M., Hansen, N., Dietrich, M., Methling, T., Moshammer, K., Yang, B. Proc. Comb. Inst. 2021, 38, 2387–2395; https://doi.org/10.1016/j.proci.2020.06.103.Suche in Google Scholar

5. Hansen, N., Yang, B., Braun-Unkhoff, M., Ramirez, A., Kukkadapu, G. Combust. Flame 2022, 243, 112075; https://doi.org/10.1016/j.combustflame.2022.112075.Suche in Google Scholar

6. Adamson, B. A., Skeen, S. A., Ahmed, M., Hansen, N. Z. Phys. Chem. 2020, 234, 1295–1310; https://doi.org/10.1515/zpch-2020-1638.Suche in Google Scholar

7. Kohse-Höinghaus, K. Chem. Rev. 2023, 123, 5139–5219; https://doi.org/10.1021/acs.chemrev.2c00828.Suche in Google Scholar

8. D’Anna, A., Sirignano, M. Comput. Aided Chem. Eng. 2019, 45, 647–672; https://doi.org/10.1016/B978-0-444-64087-1.00012-7.Suche in Google Scholar

9. Michelsen, H. A., Colket, M. B., Bengtsson, P.-E., D’Anna, A., Desgroux, P., Haynes, B. S., Miller, J. H., Nathan, G. J., Pitsch, H., Wang, H. ACS Nano 2020, 14, 12470–12490; https://doi.org/10.1021/acsnano.0c06226.Suche in Google Scholar

10. Martin, J. W., Salamanca, M., Kraft, M. Prog. Energy Combust. Sci. 2022, 88, 100956; https://doi.org/10.1016/j.pecs.2021.100956.Suche in Google Scholar

11. Kalbhor, A., Schmitz, R., Ramirez, A., Vlavakis, P., Hagen, F. P., Ferraro, F., Braun-Unkhoff, M., Kathrotia, T., Riedel, U., Trimis, D., van Oijen, J., Hasse, C., Mira, D. Combust. Flame 2024, 260, 113220; https://doi.org/10.1016/j.combustflame.2023.113220.Suche in Google Scholar

12. Knorre, V. G., Tanke, D., Tienel, T., Wagner, H. G. Proc. Combust. Inst. 1996, 26, 2303–2010.10.1016/S0082-0784(96)80058-0Suche in Google Scholar

13. Roesler, J. F., Martinot, S., McEnally, C. S., Pfefferle, L. D., Delfau, J.-L., Vovelle, C. Combust. Flame 2003, 134, 249–260; https://doi.org/10.1016/s0010-2180(03)00093-2.Suche in Google Scholar

14. Yoon, S. S., Lee, S. M., Chung, S. H. Proc. Combust. Inst. 2005, 30, 1417–1424; https://doi.org/10.1016/j.proci.2004.08.038.Suche in Google Scholar

15. Trottier, S., Guo, H., Smallwood, S., Johnson, M. R. Proc. Combust. Inst. 2007, 31, 611–619; https://doi.org/10.1016/j.proci.2006.07.229.Suche in Google Scholar

16. Choi, J.-H. J. Korean Soc. Mar. Eng. 2009, 33, 378–386; https://doi.org/10.5916/jkosme.2009.33.3.378.Suche in Google Scholar

17. Shao, C., Guan, B., Lin, B., Gu, H., Li, Z., Lin, H., Huang, Z. Fuel 2016, 186, 422–429; https://doi.org/10.1016/j.fuel.2016.08.081.Suche in Google Scholar

18. Peukert, S., Sallom, A., Emelianov, A., Endres, T., Fikri, M., Böhm, H., Jander, H., Eremin, A., Schulz, C. Proc. Combust. Inst. 2019, 37; https://doi.org/10.1016/j.proci.2018.05.084.Suche in Google Scholar

19. Mbarawa, M., Lee, W., Nam, Y. W., Chung, S. H. Ethylene-propane and ethylene-dimethyl ether effects on soot formation. R & D J. 2007, 23, 33–38.Suche in Google Scholar

20. McEnally, C. S., Pfefferle, L. Proc. Combust. Inst. 2007, 31, 603–610; https://doi.org/10.1016/j.proci.2006.07.005.Suche in Google Scholar

21. Wu, J., Ki, H. S., Litzinger, T., Lee, S.-Y., Santoro, R., Linevsky, M. Combust. Sci. Technol. 2006, 78, 837–863; https://doi.org/10.1080/00102200500269942.Suche in Google Scholar

22. Kitamura, T., Ito, T., Senda, J., Fujimoto, H. JSAE Rev. 2001, 22, 139–145; https://doi.org/10.1016/s0389-4304(00)00108-9.Suche in Google Scholar

23. Esarte, C., Abian, M., Millera, A., Alzueta, M. U. Energy Fuels 2012, 43, 37–46; https://doi.org/10.1016/j.energy.2011.11.027.Suche in Google Scholar

24. Alkemade, U., Homann, K.-H. Z. Phys. Chem. 1989, 161, 19–34; https://doi.org/10.1524/zpch.1989.161.part_1_2.019.Suche in Google Scholar

25. Colket, M. B., Serry, D. J. Proc. Combust. Inst. 1994, 25, 883–891; https://doi.org/10.1016/s0082-0784(06)80723-x.Suche in Google Scholar

26. Marinov, N., Pitz, W., Westbrook, C., Castaldi, M., Senkan, S. Combust. Sci. Technol. 1996, 116, 211–287; https://doi.org/10.1080/00102209608935550.Suche in Google Scholar

27. Atakan, B., Lamprecht, A., Kohse-Höinghaus, K. Combust. Flame 2003, 133, 431–440; https://doi.org/10.1016/s0010-2180(03)00040-3.Suche in Google Scholar

28. Appel, J., Bockhorn, H., Frenklach, M. Combust. Flame 2000, 121, 122–136; https://doi.org/10.1016/s0010-2180(99)00135-2.Suche in Google Scholar

29. Grotheer, H.-H., Pokorny, H., Barth, K.-L., Thierley, M., Aigner, M. Chemosphere 2004, 57, 1335–1342; https://doi.org/10.1016/j.chemosphere.2004.08.054.Suche in Google Scholar PubMed

30. Böhm, H., Jander, H. Phys. Chem. Chem. Phys. 1999, 1, 3775–3781; https://doi.org/10.1039/a903306h.Suche in Google Scholar

31. Aghsaee, M., Dürrstein, S. H., Herzler, J., Böhm, H., Fikri, M., Schulz, C. Combust. Flame 2014, 161, 2263–2269; https://doi.org/10.1016/j.combustflame.2014.03.012.Suche in Google Scholar

32. Böhm, H., Emelianov, A., Eremin, A., Schulz, C., Jander, H. Combust. Flame 2011, 159, 932–939; https://doi.org/10.1016/j.combustflame.2011.09.012.Suche in Google Scholar

33. Sojka, J. PhD Thesis, University of Heidelberg, Heidelberg, Germany, 2001. available from world wide web: http://archiv.ub.uni-heidelberg.de/volltextserver/1828/ (accessed May 25, 2023).Suche in Google Scholar

34. Hedges, C. J. PhD Thesis, University of Heidelberg, Heidelberg, Germany, 2007. http://archiv.ub.uni-heidelberg.de/volltextserver/7379 (accessed May 25, 2023).Suche in Google Scholar

35. Böhm, H., Braun-Unkhoff, M., Frank, P. Comput. Fluid Dynam. 2003, 3, 145–150; https://doi.org/10.1504/pcfd.2003.003771.Suche in Google Scholar

36. Wang, H., Frenklach, M. Combust. Flame 1997, 110, 173–221; https://doi.org/10.1016/s0010-2180(97)00068-0.Suche in Google Scholar

37. Naydenova, I. Soot formation Modeling during Hydrocarbon Pyrolysis. PhD Thesis, University of Heidelberg, Heidelberg, Germany, 2007. https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=66468153 (accessed May 25, 2023).Suche in Google Scholar

38. Richter, H., Grieco, W. J., Howard, J. B. Combust. Flame 1999, 119, 1–22; https://doi.org/10.1016/s0010-2180(99)00032-2.Suche in Google Scholar

39. Harris, S. H., Weiner, A. M., Blind, R. J. Combust. Flame 1988, 72, 91–10; https://doi.org/10.1016/0010-2180(88)90099-5.Suche in Google Scholar

40. Wang, H., Reitz, R., Yao, M., Yang, B., Jiao, O., Qiu, L. Combust. Flame 2013, 161, 1972–1983.Suche in Google Scholar

41. Keller, A., Kovacs, R., Homann, K.-H. Phys. Chem. Chem. Phys. 1999, 2, 1667–1675; https://doi.org/10.1039/a908190i.Suche in Google Scholar

42. Böhm, H., Jander, H. Oxid. Commun. 2005, 28, 17–27.10.1026/1617-6383.17.1.27Suche in Google Scholar

43. Wang, H. Proc. Combust. Inst. 2011, 33, 41–67; https://doi.org/10.1016/j.proci.2010.09.009.Suche in Google Scholar

44. Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelly, A. P., Law, C. W. Progr. Energy Combust. Sci. 2012, 38, 468–501; https://doi.org/10.1016/j.pecs.2012.03.004.Suche in Google Scholar

45. Stull, D. R., Prophet, H. Thermochemical Tables; National Bureau of Standards: Washington (DC), USA, 1971.Suche in Google Scholar

46. Burcat, A., Ruscic, B. Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables, Technion Report No. ANL 05/20 and TAE 960; Technion-IIT Aerospace Engineering Chemistry Division, Haifa, Israel; and Argonne National Laboratory: Illinois, USA, 2005.10.2172/925269Suche in Google Scholar

47. Kee, R. J., Rupley, F. M., Miller, J. A. The Chemkin Thermochemical Data Base, Report No. SAND87-8215; Sandia National Laboratories: Livermore (CA), USA, 1987.Suche in Google Scholar

48. Benson, S. W. Thermochemical Kinetics; Wiley: New York, USA, 1976.Suche in Google Scholar

49. Muller, C., Michel, V., Scacchi, G., Côme, C. M. J. Chim. Phys. 1995, 92, 1154–1177; https://doi.org/10.1051/jcp/1995921154.Suche in Google Scholar

50. Smoluchowski, M. V. Z. Phys. Chem. 1917, 92, 129.Suche in Google Scholar

51. Frenklach, M., Harris, S. J. J. Colloid Interface Sci. 1987, 118, 252–265.10.1016/0021-9797(87)90454-1Suche in Google Scholar

52. Lutz, E., Kee, R. J., Miller, J. A. Senkin: Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas-phase Chemical Kinetics, Report No. SAND89-8009; Sandia National Laboratories: Livermore (CA) USA, 1989.Suche in Google Scholar

53. Drakon, A., Eremin, A., Shu, B., Fikri, M., Schulz, C. 8th European Combustion Meeting; Dubrovnik, Croatia, 2017.Suche in Google Scholar

54. Drakon, A., Eremin, A., Mikheyeva, E., Shu, B., Fikri, M., Schulz, C. Combust. Flame 2018, 161, 158–168; https://doi.org/10.1016/j.combustflame.2018.09.014.Suche in Google Scholar

55. Dworkin, S. B., Zhang, Q., Thomson, M. J., Slavinskaya, N. A., Riedel, U. Combust. Flame 2011, 158, 1682–1695; https://doi.org/10.1016/j.combustflame.2011.01.013.Suche in Google Scholar

56. Apicella, B., Russo, C., Carpentieri, A., Tregossi, A., Ciajolo, A. Fuel 2022, 309, 122356–122368; https://doi.org/10.1016/j.fuel.2021.122356.Suche in Google Scholar

Received: 2023-06-20
Accepted: 2024-03-07
Published Online: 2024-04-03
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0283/html
Button zum nach oben scrollen