Numerical study on the temperature dependence of soot formation in acetylene pyrolysis blended with methane, formaldehyde, methanol, and dimethyl ether
Abstract
This paper addresses the combined effects of varying C/H and C/O ratios as well as of the molecular structure of the fuels selected on the normalized soot volume fraction f V. For the simulations, an already existing and validated reaction mechanism for the pyrolysis of C2H2 in argon, Aghsaee et al. (Combust. Flame 2014, 161, 2263–2269), was used in the current work. It was extended with PAH reactions from coronene (C24H12) up to ovalene (C32H14), whereas general principles for the rapid build-up of large PAHs were presented. Soot formation was modeled according to Appel et al. (Combust. Flame 2000, 121, 122–136) by applying the method of moments. A validation of the extended reaction model was carried out for shock-wave-induced O2/C2H2 mixtures from literature. In the following, the influence of blends of methane (CH4), formaldehyde (CH2O), methanol (CH3OH), and dimethyl ether (CH3)2O on soot formation during C2H2 pyrolysis diluted in Ar was studied. Special emphasis was laid on the inception chemistry of soot formation. The role of intermediates, such as the propargyl radical (C3H3), leading towards benzene and polyaromatic hydrocarbon (PAH) formation and their interplay with hydrogen molecules (H2) to H atoms (H) ratio was examined. All blends increased the ratio of the concentrations of H2 and H leading thus to reduced soot inception and soot formation. However, soot suppressing effects were overrun by supporting ones when the additives provided suitable molecular groups, such as methyl radicals (CH3), in sufficient high concentrations for early aromatic ring formation. Thus, a prominent synergistic effect on soot formation was found for the CH4/C2H2 mixture only. Besides, species able to mirror characteristics of the soot formation process, such as the peak value of the normalized soot volume fraction, are presented. The findings of this work indicate the synergistic effect of H2/H and C/O ratios as well as of methyl radicals on the PAHs’ production of appropriate size able to initiate soot inception process in an aliphatic fuel.
Funding source: Deutsche Forschungsgemeinschaft (DFG) project title "Der Einfluss von Wasserstoff und Sauerstoff auf die ersten Schritte der Rußbildung"
Award Identifier / Grant number: 275255277
Acknowledgments
The authors thank Prof. Dr. C. Schulz for providing the facilities at the Institute for Combustion and Gas Dynamics – Reactive Fluids, University of Duisburg-Essen, Germany, to support this work, Dr. M. Fikri for fruitful discussions, and Dr. Elke Goos (DLR Stuttgart, Germany) for preparing Figure 2 on the structures of essential PAHs presented here.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: Financial assistance from Deutsche Forschungsgemeinschaft (DFG) award number 275255277 is gratefully acknowledged.
-
Data availability: Not applicable.
References
1. Prado, G., Lahaye, J. Soot in combustion systems and its toxic properties. In Particulate Carbon: Formation during Combustion; Siegla, D. C., Smith, K. W., Eds.; Plenum: New York, USA, 1983; pp. 143–164.10.1007/978-1-4684-4463-6Suche in Google Scholar
2. Jander, H. An International Round Table Discussion, Nachrichten der Akademie der Wissenschaften Göttingen; Vandenhoeck & Ruprecht: Göttingen, Germany, 1990.Suche in Google Scholar
3. Homann, K.-H. Angew. Chem. 1998, 110, 2572–2590; https://doi.org/10.1002/(sici)1521-3757(19980918)110:18<2572::aid-ange2572>3.0.co;2-b.10.1002/(SICI)1521-3757(19980918)110:18<2572::AID-ANGE2572>3.0.CO;2-BSuche in Google Scholar
4. Braun-Unkhoff, M., Hansen, N., Dietrich, M., Methling, T., Moshammer, K., Yang, B. Proc. Comb. Inst. 2021, 38, 2387–2395; https://doi.org/10.1016/j.proci.2020.06.103.Suche in Google Scholar
5. Hansen, N., Yang, B., Braun-Unkhoff, M., Ramirez, A., Kukkadapu, G. Combust. Flame 2022, 243, 112075; https://doi.org/10.1016/j.combustflame.2022.112075.Suche in Google Scholar
6. Adamson, B. A., Skeen, S. A., Ahmed, M., Hansen, N. Z. Phys. Chem. 2020, 234, 1295–1310; https://doi.org/10.1515/zpch-2020-1638.Suche in Google Scholar
7. Kohse-Höinghaus, K. Chem. Rev. 2023, 123, 5139–5219; https://doi.org/10.1021/acs.chemrev.2c00828.Suche in Google Scholar
8. D’Anna, A., Sirignano, M. Comput. Aided Chem. Eng. 2019, 45, 647–672; https://doi.org/10.1016/B978-0-444-64087-1.00012-7.Suche in Google Scholar
9. Michelsen, H. A., Colket, M. B., Bengtsson, P.-E., D’Anna, A., Desgroux, P., Haynes, B. S., Miller, J. H., Nathan, G. J., Pitsch, H., Wang, H. ACS Nano 2020, 14, 12470–12490; https://doi.org/10.1021/acsnano.0c06226.Suche in Google Scholar
10. Martin, J. W., Salamanca, M., Kraft, M. Prog. Energy Combust. Sci. 2022, 88, 100956; https://doi.org/10.1016/j.pecs.2021.100956.Suche in Google Scholar
11. Kalbhor, A., Schmitz, R., Ramirez, A., Vlavakis, P., Hagen, F. P., Ferraro, F., Braun-Unkhoff, M., Kathrotia, T., Riedel, U., Trimis, D., van Oijen, J., Hasse, C., Mira, D. Combust. Flame 2024, 260, 113220; https://doi.org/10.1016/j.combustflame.2023.113220.Suche in Google Scholar
12. Knorre, V. G., Tanke, D., Tienel, T., Wagner, H. G. Proc. Combust. Inst. 1996, 26, 2303–2010.10.1016/S0082-0784(96)80058-0Suche in Google Scholar
13. Roesler, J. F., Martinot, S., McEnally, C. S., Pfefferle, L. D., Delfau, J.-L., Vovelle, C. Combust. Flame 2003, 134, 249–260; https://doi.org/10.1016/s0010-2180(03)00093-2.Suche in Google Scholar
14. Yoon, S. S., Lee, S. M., Chung, S. H. Proc. Combust. Inst. 2005, 30, 1417–1424; https://doi.org/10.1016/j.proci.2004.08.038.Suche in Google Scholar
15. Trottier, S., Guo, H., Smallwood, S., Johnson, M. R. Proc. Combust. Inst. 2007, 31, 611–619; https://doi.org/10.1016/j.proci.2006.07.229.Suche in Google Scholar
16. Choi, J.-H. J. Korean Soc. Mar. Eng. 2009, 33, 378–386; https://doi.org/10.5916/jkosme.2009.33.3.378.Suche in Google Scholar
17. Shao, C., Guan, B., Lin, B., Gu, H., Li, Z., Lin, H., Huang, Z. Fuel 2016, 186, 422–429; https://doi.org/10.1016/j.fuel.2016.08.081.Suche in Google Scholar
18. Peukert, S., Sallom, A., Emelianov, A., Endres, T., Fikri, M., Böhm, H., Jander, H., Eremin, A., Schulz, C. Proc. Combust. Inst. 2019, 37; https://doi.org/10.1016/j.proci.2018.05.084.Suche in Google Scholar
19. Mbarawa, M., Lee, W., Nam, Y. W., Chung, S. H. Ethylene-propane and ethylene-dimethyl ether effects on soot formation. R & D J. 2007, 23, 33–38.Suche in Google Scholar
20. McEnally, C. S., Pfefferle, L. Proc. Combust. Inst. 2007, 31, 603–610; https://doi.org/10.1016/j.proci.2006.07.005.Suche in Google Scholar
21. Wu, J., Ki, H. S., Litzinger, T., Lee, S.-Y., Santoro, R., Linevsky, M. Combust. Sci. Technol. 2006, 78, 837–863; https://doi.org/10.1080/00102200500269942.Suche in Google Scholar
22. Kitamura, T., Ito, T., Senda, J., Fujimoto, H. JSAE Rev. 2001, 22, 139–145; https://doi.org/10.1016/s0389-4304(00)00108-9.Suche in Google Scholar
23. Esarte, C., Abian, M., Millera, A., Alzueta, M. U. Energy Fuels 2012, 43, 37–46; https://doi.org/10.1016/j.energy.2011.11.027.Suche in Google Scholar
24. Alkemade, U., Homann, K.-H. Z. Phys. Chem. 1989, 161, 19–34; https://doi.org/10.1524/zpch.1989.161.part_1_2.019.Suche in Google Scholar
25. Colket, M. B., Serry, D. J. Proc. Combust. Inst. 1994, 25, 883–891; https://doi.org/10.1016/s0082-0784(06)80723-x.Suche in Google Scholar
26. Marinov, N., Pitz, W., Westbrook, C., Castaldi, M., Senkan, S. Combust. Sci. Technol. 1996, 116, 211–287; https://doi.org/10.1080/00102209608935550.Suche in Google Scholar
27. Atakan, B., Lamprecht, A., Kohse-Höinghaus, K. Combust. Flame 2003, 133, 431–440; https://doi.org/10.1016/s0010-2180(03)00040-3.Suche in Google Scholar
28. Appel, J., Bockhorn, H., Frenklach, M. Combust. Flame 2000, 121, 122–136; https://doi.org/10.1016/s0010-2180(99)00135-2.Suche in Google Scholar
29. Grotheer, H.-H., Pokorny, H., Barth, K.-L., Thierley, M., Aigner, M. Chemosphere 2004, 57, 1335–1342; https://doi.org/10.1016/j.chemosphere.2004.08.054.Suche in Google Scholar PubMed
30. Böhm, H., Jander, H. Phys. Chem. Chem. Phys. 1999, 1, 3775–3781; https://doi.org/10.1039/a903306h.Suche in Google Scholar
31. Aghsaee, M., Dürrstein, S. H., Herzler, J., Böhm, H., Fikri, M., Schulz, C. Combust. Flame 2014, 161, 2263–2269; https://doi.org/10.1016/j.combustflame.2014.03.012.Suche in Google Scholar
32. Böhm, H., Emelianov, A., Eremin, A., Schulz, C., Jander, H. Combust. Flame 2011, 159, 932–939; https://doi.org/10.1016/j.combustflame.2011.09.012.Suche in Google Scholar
33. Sojka, J. PhD Thesis, University of Heidelberg, Heidelberg, Germany, 2001. available from world wide web: http://archiv.ub.uni-heidelberg.de/volltextserver/1828/ (accessed May 25, 2023).Suche in Google Scholar
34. Hedges, C. J. PhD Thesis, University of Heidelberg, Heidelberg, Germany, 2007. http://archiv.ub.uni-heidelberg.de/volltextserver/7379 (accessed May 25, 2023).Suche in Google Scholar
35. Böhm, H., Braun-Unkhoff, M., Frank, P. Comput. Fluid Dynam. 2003, 3, 145–150; https://doi.org/10.1504/pcfd.2003.003771.Suche in Google Scholar
36. Wang, H., Frenklach, M. Combust. Flame 1997, 110, 173–221; https://doi.org/10.1016/s0010-2180(97)00068-0.Suche in Google Scholar
37. Naydenova, I. Soot formation Modeling during Hydrocarbon Pyrolysis. PhD Thesis, University of Heidelberg, Heidelberg, Germany, 2007. https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=66468153 (accessed May 25, 2023).Suche in Google Scholar
38. Richter, H., Grieco, W. J., Howard, J. B. Combust. Flame 1999, 119, 1–22; https://doi.org/10.1016/s0010-2180(99)00032-2.Suche in Google Scholar
39. Harris, S. H., Weiner, A. M., Blind, R. J. Combust. Flame 1988, 72, 91–10; https://doi.org/10.1016/0010-2180(88)90099-5.Suche in Google Scholar
40. Wang, H., Reitz, R., Yao, M., Yang, B., Jiao, O., Qiu, L. Combust. Flame 2013, 161, 1972–1983.Suche in Google Scholar
41. Keller, A., Kovacs, R., Homann, K.-H. Phys. Chem. Chem. Phys. 1999, 2, 1667–1675; https://doi.org/10.1039/a908190i.Suche in Google Scholar
42. Böhm, H., Jander, H. Oxid. Commun. 2005, 28, 17–27.10.1026/1617-6383.17.1.27Suche in Google Scholar
43. Wang, H. Proc. Combust. Inst. 2011, 33, 41–67; https://doi.org/10.1016/j.proci.2010.09.009.Suche in Google Scholar
44. Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelly, A. P., Law, C. W. Progr. Energy Combust. Sci. 2012, 38, 468–501; https://doi.org/10.1016/j.pecs.2012.03.004.Suche in Google Scholar
45. Stull, D. R., Prophet, H. Thermochemical Tables; National Bureau of Standards: Washington (DC), USA, 1971.Suche in Google Scholar
46. Burcat, A., Ruscic, B. Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables, Technion Report No. ANL 05/20 and TAE 960; Technion-IIT Aerospace Engineering Chemistry Division, Haifa, Israel; and Argonne National Laboratory: Illinois, USA, 2005.10.2172/925269Suche in Google Scholar
47. Kee, R. J., Rupley, F. M., Miller, J. A. The Chemkin Thermochemical Data Base, Report No. SAND87-8215; Sandia National Laboratories: Livermore (CA), USA, 1987.Suche in Google Scholar
48. Benson, S. W. Thermochemical Kinetics; Wiley: New York, USA, 1976.Suche in Google Scholar
49. Muller, C., Michel, V., Scacchi, G., Côme, C. M. J. Chim. Phys. 1995, 92, 1154–1177; https://doi.org/10.1051/jcp/1995921154.Suche in Google Scholar
50. Smoluchowski, M. V. Z. Phys. Chem. 1917, 92, 129.Suche in Google Scholar
51. Frenklach, M., Harris, S. J. J. Colloid Interface Sci. 1987, 118, 252–265.10.1016/0021-9797(87)90454-1Suche in Google Scholar
52. Lutz, E., Kee, R. J., Miller, J. A. Senkin: Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas-phase Chemical Kinetics, Report No. SAND89-8009; Sandia National Laboratories: Livermore (CA) USA, 1989.Suche in Google Scholar
53. Drakon, A., Eremin, A., Shu, B., Fikri, M., Schulz, C. 8th European Combustion Meeting; Dubrovnik, Croatia, 2017.Suche in Google Scholar
54. Drakon, A., Eremin, A., Mikheyeva, E., Shu, B., Fikri, M., Schulz, C. Combust. Flame 2018, 161, 158–168; https://doi.org/10.1016/j.combustflame.2018.09.014.Suche in Google Scholar
55. Dworkin, S. B., Zhang, Q., Thomson, M. J., Slavinskaya, N. A., Riedel, U. Combust. Flame 2011, 158, 1682–1695; https://doi.org/10.1016/j.combustflame.2011.01.013.Suche in Google Scholar
56. Apicella, B., Russo, C., Carpentieri, A., Tregossi, A., Ciajolo, A. Fuel 2022, 309, 122356–122368; https://doi.org/10.1016/j.fuel.2021.122356.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Gamma radiation-induced degradation of Acid Violet 49 in the presence of hydrogen peroxide (H2O2) in an aqueous medium
- Oxygen doped g-C3N4/LDH composite as highly efficient photocatalyst for wastewater treatment
- Facile synthesis of lanthanum carbonate octahydrate and lanthanum oxide nanoparticles by sonochemical method: systematic characterizations
- Numerical study on the temperature dependence of soot formation in acetylene pyrolysis blended with methane, formaldehyde, methanol, and dimethyl ether
- The role of greenhouse gases in radiative equilibrium – Thermodynamic evaluation
- Ab initio study of surfaces of lead and tin based metal halide perovskite structures
- Experimental study of heat pipes for battery cooling technology in EVs
- Cellulose acetate sheet supported gold nanoparticles for the catalytic reduction of toxic organic pollutants
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Gamma radiation-induced degradation of Acid Violet 49 in the presence of hydrogen peroxide (H2O2) in an aqueous medium
- Oxygen doped g-C3N4/LDH composite as highly efficient photocatalyst for wastewater treatment
- Facile synthesis of lanthanum carbonate octahydrate and lanthanum oxide nanoparticles by sonochemical method: systematic characterizations
- Numerical study on the temperature dependence of soot formation in acetylene pyrolysis blended with methane, formaldehyde, methanol, and dimethyl ether
- The role of greenhouse gases in radiative equilibrium – Thermodynamic evaluation
- Ab initio study of surfaces of lead and tin based metal halide perovskite structures
- Experimental study of heat pipes for battery cooling technology in EVs
- Cellulose acetate sheet supported gold nanoparticles for the catalytic reduction of toxic organic pollutants