Startseite Naturwissenschaften Facile synthesis of lanthanum carbonate octahydrate and lanthanum oxide nanoparticles by sonochemical method: systematic characterizations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Facile synthesis of lanthanum carbonate octahydrate and lanthanum oxide nanoparticles by sonochemical method: systematic characterizations

  • Sentienla Imsong , Punazungba Imsong , Swapnali Hazarika EMAIL logo und M. Indira Devi EMAIL logo
Veröffentlicht/Copyright: 19. März 2024

Abstract

This study could present the size and morphology of two synthesized nanoparticles (NPs) by observing their smallest possible dimensions. Lanthanum carbonate nanoparticles were synthesized by sonochemical method through the interaction of lanthanum acetate hydrate and sodium carbonate in an aqueous medium with a probe sonicator. After rigorous washing followed by drying, the La2(CO3)3·8H2O(S1) NPs were calcined at a temperature of 600 °C to obtain lanthanum oxide nanoparticles (S2). Both NPs were characterised through various instrumental techniques. PXRD study showed orthorhombic with space group of Pccn (56) and hexagonal phases with space group of P 3 m 1 (164) for S1 and S2 respectively whose morphology and elemental analysis were studied through FESEM and EDX. High resolution TEM image of La2(CO3)3·8H2O and La2O3 showed spherical shapes of the nanoparticles. Further study of XPS and FTIR conveyed detailed information of both nanoparticles whose TGA-DSC showed three step decomposition curves. The size and morphology of the synthesized nanoparticles have been found to have a distinct morphology and are found comparatively smaller in size than those observed in the earlier reported works (Table 1

Table 1:

Comparative study of synthesized lanthanum carbonate and lanthanum oxide NPs with various techniques applied by other researchers.

Sl. no. Name of NPs Methods Conditions Size of NP Reference
1 La2(CO3)3·8H2O Sonochemical method Time: 25 min XRD: Pccn (56) a = 8.9840 Å

b = 9.5800 Å

c = 17.0000 Å
This work
Temperature: 301 K Size: 24.102 nm
Starting materials:

(a) La(CH3COO)2: 0.050 M

(b) Na2CO3:0.050 M
TEM:

Size: 4–30 nm
La2(CO3)3 Reverse micelles Time: 1 h XRD:

Size: nanoparticles absent
[20]
Temperature: 303 K
Starting materials:

(a) Triton X-100

(b) Cyclohexane

(c) n-butylalcohol

(d) La(NO3)3(aq)

e) NaCO3(aq)
La2(CO3)3·8H2O Hydrothermal Time: 2–5 days XRD:

Pccn a = 8.984 Å

b = 9.580 Å

c = 17.00 Å
[21]
Temperature: 773 K Size: nanoparticles absent
Prepared by slow hydrolysis of La(CCl3COO)3
La2(CO3)3·1.4H2O Hydrothermal Time: 1 h 30 min Structure unknown [22]
Temperature: 368 K
Starting material:

(a) La2O3

(b) HNO3

(c) Urea
La2(CO3)3·1.7H2O Sonochemical Time: 30 min XRD:

a = 8.990 Å

c = 9.675 Å
[23]
Temperature: not specified Size: not specified
(a) La(OAC)3

(b) Na2CO3
TEM:

Size: 25–35 nm
Concentration:

(a) La(OAC)3: 0.051 M

(b) Na2CO3: 0.251 M
La2(CO3)3·5H2O Hydrothermal Time: XRD:

Pbca a = 9.0167 Å

b = 12.842 Å

c = 9.6331 Å
[24]
Temperature: Size: not specified
Starting materials:

(a) La2O3

(b) HCl

(c) Na2CO3
La2(CO3)3·3.4H2O Hydrothermal Time: 3–4 h XRD:

P21212

a = 9.57 Å

b = 12.65 Å c = 8.94 Å
[25]
Temperature: 298–308 K Size: not specified
Starting materials:

(a) LaCl3

(b) NH4HCO3
2 La2O3 Thermal decomposition Time: 2 h P3m1

a = 3.973 Å

b = 3.9373 Å

c = 6.129 Å
[26]
Temperature: 1073 K Size: 15 nm
Starting material: La(OH)3 nanorods TEM:

Size: 23 nm
La2O3 Thermal decomposition Time: 2 h XRD:

a = 11.347 Å
[23]
Temperature: 873 K Size: 30 nm
Starting material:

La2(CO3)3·1.7H2O
TEM:

Size: 30 nm
La2O3 Thermal decomposition Time: not specified Not specified [27]
Temperature: 1198 K
Starting material:

(a) La(NO3)3·9H2O

(b) NH4HCO3
La2O3 Thermal decomposition Time: 4 h Not specified [28]
Temperature: 1073 K
Starting material: La(OH)3
La2O3 Thermal decomposition Time: 2 h P 3 m 1

a = 3.973 Å

b = 3.9373 Å

c = 6.129 Å
This work
Temperature: 873 K XRD:

Size: 43.26 nm
Starting material: La2(CO3)3·8H2O TEM:

Size: 17–34 nm
).


Corresponding author: Swapnali Hazarika, Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat 785006 Assam, India, E-mail: ; and M. Indira Devi, Department of Chemistry, Nagaland University, Lumami-798626, Zunheboto, India, E-mail:

Acknowledgments

The authors acknowledge with thanks Council of Scientific and Industrial Research – North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam for providing with the necessary materials and technical support for the research work, UGC for financial assistance and Department of Chemistry, Nagaland University, Lumami for Ph.D. studentship.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., Biswas, P. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077.10.1080/02786826.2015.1100710Suche in Google Scholar

2. Szucs, A. M., Stavropoulou, A., O’Donnell, C., Davis, S., Rodriguez-Blanco, J. D. Reaction pathways toward the formation of bastnäsite: replacement of calcite by rare earth carbonates. Cryst. Growth Des. 2021, 21, 512–527; https://doi.org/10.1021/acs.cgd.0c01313.Suche in Google Scholar

3. Veerasingam, M., Murugesan, B., Mahalingam, S. Ionic liquid mediated morphologically improved lanthanum oxide nanoparticles by andrographis paniculata leaves extract and its biomedical applications. J. Rare Earths. 2020, 38, 281–291; https://doi.org/10.1016/j.jre.2019.06.006.Suche in Google Scholar

4. Takashima, T., Ishikawa, K., Irie, H. Induction of concerted proton-coupled electron transfer during oxygen evolution on hematite using lanthanum oxide as a solid proton acceptor. ACS Catal. 2019, 9, 9212–9215; https://doi.org/10.1021/acscatal.9b02936.Suche in Google Scholar

5. Sun, J., Qiu, X., Wu, F., Zhu, W. H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. Int. J. Hydrogen Energy 2005, 30, 437–445; https://doi.org/10.1016/j.ijhydene.2004.11.005.Suche in Google Scholar

6. Escudero, M. J., Nóvoa, X. R., Rodrigo, T., Daza, L. Influence of lanthanum oxide as quality promoter on cathodes for MCFC. J. Power Sources 2002, 106, 196–205; https://doi.org/10.1016/s0378-7753(01)01043-6.Suche in Google Scholar

7. Zhu, D., Chen, Q., Qiu, T., Zhao, G., Fang, X. J. Optimization of rare earth carbonate reactive-crystallization process based on response surface method. Rare Earths 2021, 39, 98–104; https://doi.org/10.1016/j.jre.2020.03.011.Suche in Google Scholar

8. Sibu, C. P., Kumar, S. R., Mukundan, P., Warrier, K. G. K. Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide. Chem. Mater. 2002, 14, 2876–2881; https://doi.org/10.1021/cm010966p.Suche in Google Scholar

9. Tang, B., Ge, J., Wu, C., Zhuo, L., Niu, J., Chen, Z., Shi, Z., Dong, Y. Sol–solvothermal synthesis and microwave evolution of La (OH) 3 nanorods to La2O3 nanorods. Nanotechnology 2004, 15, 1273–1276; https://doi.org/10.1088/0957-4484/15/9/027.Suche in Google Scholar

10. Koh, K. Y., Zhang, S., Chen, J. P. Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: material synthesis and optimization, and demonstration of excellent performance. Chem. Eng. J. 2020, 380, 122153; https://doi.org/10.1016/j.cej.2019.122153.Suche in Google Scholar

11. Vignolo, M. F., Duhalde, S., Bormioli, M., Quintana, G., Cervera, M., Tocho, J. Quintana, Structural and electrical properties of lanthanum oxide thin ® lms deposited by laser ablation. Appl. Surf. Sci. 2002, 197-198, 522–526; https://doi.org/10.1016/s0169-4332(02)00329-x.Suche in Google Scholar

12. Geng, J., Lv, Y., Lu, D., Zhu, J. Sonochemical synthesis of PbWO 4 crystals with dendritic, flowery and star-like structures. Nanotechnology 2006, 17, 2614–2620; https://doi.org/10.1088/0957-4484/17/10/028.Suche in Google Scholar PubMed

13. Zhu, L., Liu, X., Liu, X., Li, Q., Li, J., Zhang, S., Meng, J., Cao, X. Facile sonochemical synthesis of CePO4: Tb/LaPO4 core/shell nanorods with highly improved photoluminescent properties. Nanotechnology 2006, 17, 4217–4222; https://doi.org/10.1088/0957-4484/17/16/036.Suche in Google Scholar PubMed

14. Dong, L., Xu, Y. J., Sui, C., Zhao, Y., Mao, L. B., Gebauer, D., Rosenberg, R., Avaro, J., Wu, Y. D., Gao, H. L., Pan, Z., Wen, H. Q., Yan, X., Li, F., Lu, Y., Cölfen, H., Yu, S. H. Highly hydrated paramagnetic amorphous calcium carbonate nanoclusters as an MRI contrast agent. Nat. Commun. 2022, 13, 1–13.10.1038/s41467-022-32615-3Suche in Google Scholar PubMed PubMed Central

15. Fricker, S. P. The therapeutic application of lanthanides. Chem. Soc. Rev. 2006, 35, 524–533; https://doi.org/10.1039/b509608c.Suche in Google Scholar PubMed

16. Zhou, L., Liu, X. Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J. Mater. Chem. 2012, 22, 966–974.10.1039/C1JM13758ASuche in Google Scholar

17. Qiu, L., Pol, V. G., Calderon-moreno, J., Gedanken, A. Synthesis of tin nanorods via a sonochemical method combined with a polyol process. Ultrason. Sonochem. 2005, 12, 243–247; https://doi.org/10.1016/j.ultsonch.2004.02.001.Suche in Google Scholar PubMed

18. Geng, J., Zhu, J. J., Lu, D. J., Chen, H. Y. Hollow PbWO4 nanospindles via a facile sonochemical route. Inorg. Chem. 2006, 45, 8403–8407; https://doi.org/10.1021/ic0608804.Suche in Google Scholar PubMed

19. Bo, X., Wang, L., Zhao, Y. Facile synthesis of Ag/La2O2CO3 hierarchical micro/nanostructures for antibacterial activity and phosphate removal. J. Rare Earths 2020, 38, 1372–1378; https://doi.org/10.1016/j.jre.2020.02.002.Suche in Google Scholar

20. Ã, G. G., Gu, F., Wang, Z., Guo, H. Synthesis and characterization of La2 (CO3) 3 nanostructures in the Triton X-1 0 0/cyclohexane/water reverse micelles. J. Cryst. Growth 2005, 277, 631–635; https://doi.org/10.1016/j.jcrysgro.2005.01.064.Suche in Google Scholar

21. Shinn, D. B., Eick, H. A. The crystal structure of lanthanum carbonate octahydrate. Inorg. Chem. 1968, 7, 1340–1345; https://doi.org/10.1021/ic50065a018.Suche in Google Scholar

22. Panchula, M. L., Akinc, M. Morphology of lanthanum carbonate particles prepared by homogeneous precipitation. J. Eur. Ceram. Soc. 1996, 16, 833–841; https://doi.org/10.1016/0955-2219(95)00211-1.Suche in Google Scholar

23. Salavati-Niasari, M., Hosseinzadeh, G., Davar, F. Synthesis of lanthanum carbonate nanoparticles via sonochemical method for preparation of lanthanum hydroxide and lanthanum oxide nanoparticles. J. Alloys Compd. 2011, 509, 134–140; https://doi.org/10.1016/j.jallcom.2010.09.006.Suche in Google Scholar

24. Çiftçi, E., Podjaski, F., Gouder, A., Lotsch, B. V., Dinnebier, R. E., Bette, S. Crystal structure and spectral characterization of La2 (CO3) 3⋅ 5H2O–an industrially relevant lanthanide carbonate. Z. Anorg. Allg. Chemie. 2022, 648, 1–13; https://doi.org/10.1002/zaac.202200218.Suche in Google Scholar

25. Zhang, X. H., He, C., Wang, L., Liu, J., Deng, M., Feng, Q. Non-isothermal kinetic analysis of thermal dehydration of La2(CO3)3·3.4H2O in air. Trans. Nonferrous Met. Soc. China (English Ed.) 2014, 24, 3378–3385; https://doi.org/10.1016/s1003-6326(14)63480-4.Suche in Google Scholar

26. Mu, Q., Wang, Y. Synthesis, characterization, shape-preserved transformation, and optical properties of La(OH)3, La2O2CO3, and La2O3 nanorods. J. Alloys Compd. 2011, 509, 396–401; https://doi.org/10.1016/j.jallcom.2010.09.041.Suche in Google Scholar

27. Salutsky, M. L., Quill, L. L. The rare earth metals and their compounds. XII. carbonates of lanthanum, neodymium and samarium. J. Am. Chem. Soc. 1950, 72, 3306–3307; https://doi.org/10.1021/ja01163a537.Suche in Google Scholar

28. Zhong, S., Deng, B., Xu, A., Wang, S. Preparation and characterization of 3D flower-like La2O3 nanostructures. Curr. Nanosci. 2011, 7, 407–414; https://doi.org/10.2174/157341311795542408.Suche in Google Scholar

29. Jeevanandam, P., Koltypin, Y., Palchik, O., Gedanken, A. Synthesis of morphologically controlled lanthanum carbonate particles using ultrasound irradiation. J. Mater. Chem. 2001, 11, 869–873; https://doi.org/10.1039/b007370i.Suche in Google Scholar

30. Chen, K., Guo, S., Zeng, Y., Huang, W., Peng, Zhang, L., Yin, S. Facile preparation and characterization of lanthanum oxide powders by the calcination of lanthanum carbonate hydrate in microwave field. J. Ceram. Int. 2019, 46, 165–170; https://doi.org/10.1016/j.ceramint.2019.08.244.Suche in Google Scholar

31. Pathan, A., Desai, K. R. S. Synthesis of La2O3 nanoparticles using glutaric acid and propylene glycol for future CMOS applications. Int. J. Nano. Chem. 2017, 3, 1–9.10.18576/ijnc/030201Suche in Google Scholar

32. He, A., Zhou, F., Ye, F., Zhang, Y., He, X., Zhang, X., Guo, R., Zhao, X., Sun, Y., Huang, M., Li, Q., Yang, Z., Xu, Y., Wu, J. Preparation and characterization of lanthanum carbonate octahydrate for the treatment of hyperphosphatemia. J. Spectrosc. 2013, 1–6; https://doi.org/10.1155/2013/593636.Suche in Google Scholar

33. Coenen, K., Gallucci, F., Mezari, B., Hensen, E., Annaland, M. V. S. An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. J. CO2 Util. 2018, 24, 228–239; https://doi.org/10.1016/j.jcou.2018.01.008.Suche in Google Scholar

34. Tok, A. I. Y., Su, L. T., Boey, F. Y. C., Ng, S. H. Homogeneous precipitation of Dy2O3 nanoparticles—Effects of synthesis parameters. J. Nanosci. Nanotechnol. 2007, 7, 907–915; https://doi.org/10.1166/jnn.2007.203.Suche in Google Scholar PubMed

35. Zhao, D., Yang, Q., Han, Z., Sun, F., Tang, K., Yu, F. Rare earth hydroxycarbonate materials with hierarchical structures : preparation and characterization , and catalytic activity of derived oxides. Solid State Sci. 2008, 10, 1028–1036; https://doi.org/10.1016/j.solidstatesciences.2007.11.019.Suche in Google Scholar

36. Klingenberg, B., Vannice, M. A. Influence of pretreatment on lanthanum nitrate, carbonate, and oxide powders. Chem. Mater. 1996, 8, 2755–2768; https://doi.org/10.1021/cm9602555.Suche in Google Scholar

37. Online, V. A., Xu, Z., Bian, S., Wang, J., Liu, T., Wang, L., Gao, Y. RSC Adv. 2013, 1410–1419; https://doi.org/10.1039/c2ra22480a.Suche in Google Scholar

38. Ma, X., Zhang, H., Ji, Y., Xu, J., Yang, D. Synthesis of ultrafine lanthanum hydroxide nanorods by a simple hydrothermal process. Mater. Lett. 2004, 58, 1180–1182; https://doi.org/10.1016/j.matlet.2003.08.031.Suche in Google Scholar

39. Zhou, M., Yuan, J., Yuan, W., Yin, Y., Hong, X. Functionalization of lanthanum hydroxide nanowires by atom transfer radical polymerization. Nanotechnology 2007, 18, 1–8.10.1088/0957-4484/18/40/405704Suche in Google Scholar

40. Suzuki, S., Nagakura, I., Ishii, T., Satoh, T., Sagawa, T. The optical 4d → 4f transition and the binding energy of the 4d level in La and Ce. Phys. Lett. A. 1972, 41, 95–96; https://doi.org/10.1016/0375-9601(72)91063-8.Suche in Google Scholar

41. Wang, X., Wang, M., Song, H., Ding, B. A simple sol – gel technique for preparing lanthanum oxide nanopowders. Mater. Lett. 2006, 60, 2261–2265; https://doi.org/10.1016/j.matlet.2005.12.142.Suche in Google Scholar

Received: 2023-10-25
Accepted: 2024-02-23
Published Online: 2024-03-19
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0396/html
Button zum nach oben scrollen