Startseite Unraveling the surface activity and micellization characteristics of linear alkyl benzene sulfonate in aqueous solution
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Unraveling the surface activity and micellization characteristics of linear alkyl benzene sulfonate in aqueous solution

  • Bharti Budhalakoti EMAIL logo und Navin Chandra Kothiyal
Veröffentlicht/Copyright: 13. November 2023

Abstract

The aggregation behavior of various neutralizing agents (monovalent and diamine bases) has been investigated for linear alkylbenzene sulfonate. Measurements employing conductivity at temperature (298.15 K, 303.15 K, 308.15 K, and 313.15 K) and surface tension at 298.15 K have been determined to study micellization and surface active properties. The conductivity versus concentration plot elucidated CMC and dissociation of counterion (α). Additionally, surface active parameters ϒCMC, A min, π CMC, and τ max were investigated via tensiometry using the Wilhelmy plate procedure. The wettability characteristic of the surfactant solution was determined using contact angle analysis. Furthermore, the particle size parameters were determined using DLS measurements. The Gemini salts of LABS portrayed improved efficiency and demonstrated economical in domestic and industrial applications.


Corresponding author: Bharti Budhalakoti, Department of Chemistry, Nanosurface and Environmental Chemistry Laboratory, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India, E-mail:

Funding source: NA

Award Identifier / Grant number: NA

Acknowledgments

The authors are thankful the Director and Head, Department of Chemistry Dr. B.R. Ambedkar National Institute of Technology for necessary laboratory facilities. They are also thankful to Central Instrumentation Facility Lovely Professional University, Jalandhar for providing needful facilities.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Smith, G. A., Huggett, A., Jones, C., Ortego, G. Surface activity and performance properties of gemini salts of linear alkylbenzene sulfonate in aqueous solution. J. Surfactants Deterg. 2021, 24, 563–574; https://doi.org/10.1002/jsde.12496.Suche in Google Scholar

2. Abe, M. Mixed Surfactant Systems; CRC Press: New York, Vol. 124, 2004.10.1201/9781420031010Suche in Google Scholar

3. Moroi, Y. Micelles: Theoretical and Applied Aspects; Springer Science & Business Media: New York and London, 1992.Suche in Google Scholar

4. Logan, J. W., Moya, F. R. Animal-derived surfactants for the treatment and prevention of neonatal respiratory distress syndrome: summary of clinical trials. Ther. Clin. Risk Manage. 2009, 5, 251–260; https://doi.org/10.2147/tcrm.s4029.Suche in Google Scholar PubMed PubMed Central

5. Wang, C., Li, X., Wettig, S. D., Badea, I., Foldvari, M., Verrall, R. E. Investigation of complexes formed by interaction of cationic gemini surfactants with deoxyribonucleic acid. Phys. Chem. Chem. Phys. 2007, 9, 1616–1628; https://doi.org/10.1039/b618579g.Suche in Google Scholar PubMed

6. Gelderblom, H., Verweij, J., Nooter, K., Sparreboom, A., Cremophor, E. L. The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 2001, 37, 1590–1598; https://doi.org/10.1016/S0959-8049(01)00171-X.Suche in Google Scholar

7. Lonsdale, H. K. Membrane mimetic chemistry: characterization and applications of micelles, microemulsions, monolayers, bilayers, vesicles, host–guest systems and polyions. J. Membr. Sci. 1983; https://doi.org/10.1016/s0376-7388(00)80093-9.Suche in Google Scholar

8. Menger, F. M., Rhee, J. U., Rhee, H. K. Applications of surfactants to synthetic organic chemistry. J. Org. Chem. 1975, 40, 3803–3805; https://doi.org/10.1021/jo00913a051.Suche in Google Scholar

9. Bolan, S., Padhye, L. P., Mulligan, C. N., Alonso, E. R., Saint-Fort, R., Jasemizad, T., Wang, C., Zhang, T., Rinklebe, J., Wang, H., Siddique, K. H., Kirkham, M., Bolan, N. Surfactant-enhanced mobilization of persistent organic pollutants: potential for soil and sediment remediation and unintended consequences. J. Hazard. Mater. 2023, 443; https://doi.org/10.1016/j.jhazmat.2022.130189.Suche in Google Scholar PubMed

10. Rapaport, R. A., Eckhoff, W. S. Monitoring linear alkyl benzene sulfonate in the environment: 1973–1986. Environ. Toxicol. Chem. 1990, 9, 1245–1257. https://doi.org/10.1897/1552-8618(1990)9[1245:mlabsi]2.0.co;2.10.1002/etc.5620091003Suche in Google Scholar

11. Thoumelin, G. Les tensio-actifs dans les eaux douces et marines: analyse, comportement, écotoxicologie. Repères Oceans 1995, 9; https://archimer.ifremer.fr/doc/00000/1447/.Suche in Google Scholar

12. Cohen, L., Martin, M., Soto, F., Trujillo, F., Sanchez, E. The effect of counterions of linear alkylbenzene sulfonate on skin compatibility. J. Surfactants Deterg. 2016, 19, 219–222; https://doi.org/10.1007/s11743-015-1765-8.Suche in Google Scholar

13. Moreno, A., Cohen, L., Berna, J. L. Influence of structure and counterions on physicochemical properties of linear alkylbenzene sulfonates. J. Am. Oil Chem. Soc. 1990, 67, 547–552; https://doi.org/10.1007/BF02540764.Suche in Google Scholar

14. Cui, X., Mao, S., Liu, M., Yuan, H., Du, Y. Mechanism of surfactant micelle formation. Langmuir 2008, 24, 10771–10775; https://doi.org/10.1021/la801705y.Suche in Google Scholar PubMed

15. Stache, H. Anionic Surfactants: Organic Chemistry; CRC Press: New York, Basel, Hong Kong, 56, 1996.Suche in Google Scholar

16. Shen, C. Y. Properties of detergent phosphates and their effects on detergent processing. J. Am. Oil Chem. Soc. 1968, 45, 510–516; https://doi.org/10.1007/BF02541337.Suche in Google Scholar

17. Broecker, J., Keller, S. Impact of urea on detergent micelle properties. Langmuir 2013, 29, 8502–8510; https://doi.org/10.1021/la4013747.Suche in Google Scholar PubMed

18. Hait, S. K., Moulik, S. P. Gemini surfactants: a distinct class of self-assembling molecules. Curr. Sci. 2002, 82, 1101–1111.Suche in Google Scholar

19. Rosen, M. J., Tracy, D. J. Gemini surfactants. J. Surfactants Deterg. 1998, 1, 547–554; https://doi.org/10.1007/s11743-998-0057-8.Suche in Google Scholar

20. Yu, D., Tian, M., Fan, Y., Ji, G., Wang, Y. Aggregate transitions in aqueous solutions of sodium dodecylsulfate with a ‘gemini-type’ organic salt. J. Phys. Chem. B 2012, 116, 6425–6430; https://doi.org/10.1021/jp211431g.Suche in Google Scholar PubMed

21. Zhang, X., Wang, C. Supramolecular amphiphiles. Chem. Soc. Rev. 2011, 40, 94–101; https://doi.org/10.1039/b919678c.Suche in Google Scholar PubMed

22. Bala, M., Singh, V. Self-moving blooming drops of dimethyl sulfoxide containing benzyne intermediate for solutal transport. J. Mol. Liq. 2022, 350, 118514; https://doi.org/10.1016/j.molliq.2022.118514.Suche in Google Scholar

23. Wu, Y. C., Koch, W. F., Pratt, K. W. Proposed new electrolytic conductivity primary standards for KCl solutions. J. Res. Natl. Inst. Stand. Technol. 1991, 96, 191; https://doi.org/10.6028/jres.096.008.Suche in Google Scholar PubMed PubMed Central

24. Sharma, P., Kumar, H., Singla, M., kumar, V., Ghfar, A. A., Pandey, S. Micellization, surface activities, and thermodynamic studies on the ionic liquid in the presence of vitamins. J. Mol. Liq. 2022, 359; https://doi.org/10.1016/j.molliq.2022.119152.Suche in Google Scholar

25. Kaur, J., Kumar, H., Awasthi, P., Singla, M. Thermochemical investigation of aqueous solution of gemini surfactant (12-2-12) and its interactions with pharmacologically important amino acids. Monatsh. Chem. 2023, 154, 1–12; https://doi.org/10.1007/s00706-022-03007-6.Suche in Google Scholar

26. Ray, G. B., Ghosh, S., Moulik, S. P. Physicochemical studies on the interfacial and bulk behaviors of sodium N-dodecanoyl sarcosinate (SDDS). J. Surfactants Deterg. 2009, 12, 131–143; https://doi.org/10.1007/s11743-008-1105-3.Suche in Google Scholar

27. Rosen, M. J. Surfactants and Interfacial Phenomena, 2nd ed.; Wiley: New York, 151, 1989; pp. 39–55.Suche in Google Scholar

28. Del Mar Graciani, M., Rodríguez, A., Muñoz, M., Moyá, M. L. Micellar solutions of sulfobetaine surfactants in water–ethylene glycol mixtures: surface tension, fluorescence, spectroscopic, conductometric, kinetic studies. Langmuir 2005, 21, 7161–7169; https://doi.org/10.1021/la050862j.Suche in Google Scholar PubMed

29. Clint, J. H. Surfactant Aggregation; Springer Science+Business Media: New York, 1992.10.1007/978-94-011-2272-6Suche in Google Scholar

30. Tanaka, T., Lee, J., Scheller, P. R. Interfacial free energy and wettability. In Treatise on Process Metallurgy; Elsevier: Stockholm, Sweden, 2, 2013.10.1016/B978-0-08-096984-8.00025-2Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0353).


Received: 2023-09-25
Accepted: 2023-10-25
Published Online: 2023-11-13
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0353/html
Button zum nach oben scrollen